Optimization Problems and Local Search

Russell and Norvig 4.3, 4.4

Optimization Problems

- Previously: systematic exploration of search space.
 - Path to goal is the solution
 - For some problems path is irrelevant.
 - Example: 8-queens

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that visits each city exactly once.

An optimal TSP tour through Germany’s 15 largest cities (one out of 14!/2)

13,509 cities and towns in the US that have more than 500 residents

http://www.tsp.gatech.edu/

8 Queens

Stated as an optimization problem:
- State space: a board with 8 queens on it
- Objective/cost function: Number of pairs of queens that are attacking each other (quality of the state).

Local Search

- Keep a current state, try to improve it by “locally” exploring the space of solutions
- Improve state by moving a queen to a position where fewer queens attack each other (neighboring state)
- Neighbors: move a queen in its column
Greedy local search

- Problem: can get stuck in a local minimum (happens 86% of the time for the 8-queens problem).

Local minima vs. local maxima

- Local search: find a local maximum or minimum of an objective function (cost function).
- Local minima of a function $f(n)$ are the same as the maxima of $-f(n)$. Therefore, if we know how to solve one, we can solve the other.

Hill-climbing

- Apply successor function, and keep moves that improve the objective function

Hill-climbing

function HILL-CLIMBING(problem) return a state that is a local maximum

- current ← MAKE-NODE(problem.INITIAL-STATE)
- loop do
 - neighbor ← a highest valued successor of current
 - if neighbor.VALUE ≤ current.VALUE then return current.STATE
 - current ← neighbor

This flavor of hill-climbing is known as steepest ascent (steepest descent when the objective is minimization).

Local search

- Need to consider:
 - Choice of initial state
 - Successor function

Solving TSP

- Need to design a successor function that yields valid tours
- A 2-opt move:
3-opt

- Choose three edges from tour
- Remove them, and combine the three parts to a tour in the cheapest way to link them

Performing a 3-opt move

- Note that the six nodes come in pairs that are already connected: (A,B), (C,D), (E,F)
- Node ‘A’ can connect to:
 - Anything but ‘B’
 - Connecting it to D makes it a 2-Opt (OK)
 - 4 choices
- Node ‘B’ can connect to:
 - Cannot connect to ‘A’ or what ‘A’ connects to
 - Cannot connect to the other half of the pair that ‘A’ connects to.
 - 2 choices
- The final two nodes connect to each other
 - Eight legal possibilities (7 of which are novel)

Solving TSP (cont.)

- 3-opt moves lead to better local minima than 2-opt moves.
- The Lin-Kernighan algorithm (1973): a \(\lambda \)-opt move - constructs a successor that changes \(\lambda \) cities in a tour
- Often finds optimal solutions.

The Art of Local Search

- Hill-climbing (like A*) is a simple algorithm
- The art is in defining the successor function
 - More commonly called a neighborhood
 - Goal: avoid local minima

Variations

- Steepest ascent: Successor is the neighbor with the largest increase in objective function.
- Stochastic hill-climbing
 - Random selection among the uphill moves.
 - The selection probability can vary with the steepness of the uphill move.
- First-choice hill-climbing
 - Stochastic hill climbing, generating successors randomly until a better one is found.
 - Random-restart hill-climbing
 - Choose best among several hill-climbing runs, each from a different random initial state.

Random Restart

- Suppose that the probability of failure in a single try is \(P_f \)
- The probability of failure in \(k \) trials:
 \[
 P_f(k \text{ trials}) = (P_f)^k
 \]
 \[
 P_s(k \text{ trials}) = 1 - P_f(k \text{ trials}) = 1 - (P_f)^k
 \]
- The probability of success can be made arbitrarily close to 1 by increasing \(k \).
- Example: For the eight queens problem
 \[
 P_s(100 \text{ trials}) = 0.9999997
 \]
Hill climbing for NP-complete problems

- NP-complete problems can have an exponential number of local minima.

- But, a reasonably good local maximum can often be found after a small number of restarts.