Local Search for a Globally Optimal Solution

Russell and Norvig Chapter 4

Limitations of hill climbing

- Can we find a globally optimal solution?
- Can’t guarantee that. A good alternative: an approach that will give that “with high probability”.
- Need a more thorough exploration of the state space

Simulated Annealing

- Physical systems are good at finding minimum energy configurations: a physical system cooled down to absolute zero will settle into its minimum energy configuration.
- Mimic the process using a probabilistic process

Simulated Annealing

- Physical analogy.
 - Take a molten solid and freeze it very abruptly, we do not expect to get a perfect crystal.
 - Annealing: cool material gradually from high temperature, allowing it to reach equilibrium at succession of intermediate lower temperatures.
 - Algorithm will find optimal solution with high probability if using a sufficiently slow cooling schedule.

Example

Temperature: 25.0

Simulated Annealing

function SIMULATED-ANNEALING (problem, schedule) return a solution state
input: problem, a problem
schedule, a mapping from time to iteration

current ← MAKE-NODE(INITIAL-NODE [problem])
for t ← 1 to ∞ do
 T ← schedule [t]
 if T = 0 then return current
 next ← a randomly selected successor of current
 ∆E ← current.VALUE - next.VALUE
 if ∆E > 0 then current ← next
 else current ← next with probability e^∆E/T

Temperature controls the probability of increasing steps.
Properties of Simulated Annealing

- As the number of moves at a given temperature goes to infinity, the probability of a state becomes proportional to $\exp(-E/T)$ (Boltzman distribution).
- If temperature is lowered slowly enough - global optimum will be found with high probability. A lot of research into what makes a good cooling schedule.
- Widely used in a variety of applications (VLSI layout, airline scheduling, etc.)

Beam Search

- Variant of hill climbing:
 - Initially: k random states
 - Next: determine all successors of k states
 - If any successor is optimal → done
 - Else select k best from successors and repeat.
- Major difference with random-restart search:
 - Information is shared among k search threads.
- Can suffer from lack of diversity.

Genetic algorithms

- Keep a population of solutions that undergo recombination and mutation

Genetic Algorithms

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual
input: population, a set of individuals
FITNESS-FN, a function quantifying the quality of an individual
repeat
 new_population ← empty set
 for i = 1 to SIZE(population) do
 x ← RANDOM_SELECTION(population, FITNESS_FN)
 y ← RANDOM_SELECTION(population, FITNESS_FN)
 child ← REPRODUCE(x, y)
 MUTATE(child)
 add child to new_population
 population ← new_population
until some individual is fit enough or enough time has elapsed
return the best individual

Solving TSP

- Represent a tour as a permutation (i_1, \ldots, i_n) of $\{1, 2, \ldots, n\}$
- Fitness of a solution: negative of the cost of the tour
- Initialization: using either some heuristic, or a random set of permutations
- Need to define crossover and mutation operations.
Crossover

Order crossover: choose a subsequence of a tour from one parent and preserve the relative order of the cities from the other.

Example:
\[p_1 = (1 \ 2 \ 3 | 5 \ 4 \ 6 \ 7 | 8 \ 9) \]
\[p_2 = (4 \ 5 \ 2 \ 1 \ 8 \ 7 \ 6 | 9 \ 3) \]
\[c_1 = (x \ x \ x | 5 \ 4 \ 6 \ 7 | x \ x) \]
\[c_2 = (x \ x \ x | 1 \ 8 \ 7 \ 6 | x \ x) \]
The tour in \(p_2 \), starting from its second cut point, is 9 → 3 → 4 → 5 → 2 → 1 → 8 → 7 → 6. Remove the cities already in \(c_1 \), obtaining the partial tour 9 → 3 → 2 → 1 → 8. Insert this partial tour after the second cut point of \(c_1 \), resulting in \(c_1 = (2 \ 1 \ 8 \ 5 \ 4 \ 6 \ 7 | 9 \ 3) \).

Crossover (2)

Partially Mapped (PMX) crossover: choose a subsequence of a tour from one parent and preserve the order and position of as many cities as possible from the other parent.

PMX crossover

\[p_1 = (1 \ 2 \ 3 | 4 \ 5 \ 6 \ 7 | 8 \ 9) \]
\[p_2 = (4 \ 5 \ 2 \ 1 \ 8 \ 7 \ 6 | 9 \ 3) \]
\[c_1 = (x \ x \ x | 4 \ 5 \ 6 \ 7 | x \ x) \]
\[c_2 = (x \ x \ x | 1 \ 8 \ 7 \ 6 | x \ x) \]
Swap defines a mapping:
\[1 \leftrightarrow 4, 8 \leftrightarrow 5, 7 \leftrightarrow 6, 6 \leftrightarrow 7. \]
The easy ones:
\[c_1 = (x \ 2 \ 3 | 1 \ 8 \ 7 \ 6 | x \ 9) \]
\[c_2 = (x \ x \ 2 | 4 \ 5 \ 6 \ 7 | 9 \ 3) \]
For the rest, use the mapping:
\[c_1 = (4 \ 2 \ 3 \ 1 \ 8 \ 7 \ 6 \ 5 \ 9) \]
\[c_2 = (1 \ 8 \ 2 | 4 \ 5 \ 6 \ 7 | 9 \ 3). \]

Mutation

Can use a 2-opt operation:
Select two points along the permutation, cut it at these points and re-insert the reversed string.

Example:
\[(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9) \rightarrow (1 \ 2 \ 6 \ 5 \ 4 \ 3 \ 7 \ 8 \ 9) \]

The knapsack problem

Local search: summary

- Why I like local search algorithms
 - Easy to implement
 - Widely applicable
 - Provide good results
Online search

- So far, we have assumed deterministic actions and fully-known environments
 - Permits off-line search
- Consider a new problem:
 - A robot is placed in the middle of a maze
 - The task is to find the exit
 - Actions are deterministic but the environment is unknown

Questions: Can the robot do A* search?

Online agents

Difference from offline agents: An online agent can only expand the node it is physically in.
Therefore agent needs to work locally: Online DFS, IDS.
Possible only when actions are reversible.

Simple online search

- Let us assume that actions are reversible and deterministic
 - Like the robot maze (with no holes, slides, etc.)
- Then we can perform local search with an evaluation heuristic:
 - For all actions in state s:
 - Try the action, leading to state s’
 - Evaluate s’
 - Reverse the action, returning to state s
 - Select best action, going to state s’
 - If s’ is a goal, return; else repeat loop.