Deep Convolutional Neural Networks

Nov. 20th, 2015
Bruce Draper
Background: Fully-connected single layer neural networks

- Feed-forward classification
- Trained through back-propagation
Example Computer Vision Task: label these images
Neural Networks in Computer Vision

- Introduced in the 1980’s
 - ... and abandoned in the 1990’s
- Images are complex signals
 - Most of any image is “background”
 - Pixel [x,y] in one images isn’t the same 3D point as in another
 - Targets can be any place or scale
 - sometimes any orientation
- Fully-connected networks were too specific
 - Not translationally invariant
 - Not scale invariant
- Fully-connected networks have too many weights
 - Images have lots of pixels
- Sometimes used to classify image chips after focus of attention
So computer vision went in other directions...

• Object recognition (1990-2010):
 – Local feature extraction
 • Edges
 • Homogeneous regions
 • High-information image patches
 – Features to descriptors
 • Histogram of Edges (e.g. HoG, SIFT)
 • Graphs of regions
 • Image patch codes (e.g. BoW)
 – Classify images based on descriptors
 • Kernelized support vector machines (SVMs)
... until deep convolutional neural networks arrived.
Biological motivation: human vision

- Cells in the early vision system (LGN/V1)
 - Have very small receptive fields
 - Input from a specific small piece of the visual field
 - Respond to specific local patterns
- Spatially distributed like an image

Biological motivation: human vision (II)

• Further down the visual pathway (V8/ITC)
 – Larger receptive fields
 – More complex patterns
 • Respond to wider variations
 • Some are viewpoint dependent
 • Others are viewpoint independent
 – Translationally invariant
 • Within the cells receptive field

• Inspiration for DCNNs: mimic this structure
1st Convolutional Layer

- Input is an image
- For every NxN window, there is a neuron
 - N is small
- The neuron has a weight vector, a bias term and a non-linear function f
 - \(o = f(W \cdot I + b) \)
- Here's the 1st piece of magic: Every neuron has the same weight vector, bias term and non-linear function.
Convolution

- Convolution is the process of sliding one function over another and computing the dot product at every position.
- Formally, discrete 2D convolution is defined as:

\[f[x, y] \ast g[x, y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2] \]

- In practice, \(g[x, y] \) is non-zero over a small range \(N \).
- When every neuron has the same weights, the layer as a whole computes a convolution.
- In practice, \(g[x, y] \) is non-zero over a small range \(N \).
- When every neuron has the same weights, the layer as a whole computes a convolution:

\[O \equiv f(I \ast W) \]
Why Convolution?

• Convolutional layers solve two problems:
 – Small numbers of parameters
 • Given a 3x3 window size, the entire layer has only 10 weights!
 – Translational invariance
 • Translating the input just translates the output

• In terms of biological motivation
 – Outputs looks like early vision features
 • Dot products with small masks
 • Same features computed everywhere
 • Output structured like an image

• But 1 early vision feature is not enough!
1st layer: lots of feature banks

- In practice, you don’t have just 1 first layer
- You train a bank of filters (weight vectors)
- Krizhevsky et al 2012 train 96 1st level features
 - Here is an example of the trained weight vectors
Max Pooling Layers

• Convolutional layers transform (raw) images to (feature) images
 – The data didn’t get smaller or become more symbolic
 – No increase in receptive field size
• Max pooling layers reduce resolution
 – For every non-overlapping NxN window, select maximum value
 – No weights to train
 – Reduces size by N^2
Convolution & Max Pooling

• Piece of magic #2: alternate convolution and max pooling layers
 – Until the images get really small
 – Then use a fully-connected backprop net
Convolution & Max Pooling (II)

• Note that the convolution masks are 3D
 – Width x Height x Depth
 – Depth = # of features
 – 1st layer: depth = 3 (color images: R, G & B)
 – Other layers: depth = # of features at previous level

• Max pooling increases the receptive field of following layers

• 1st layer computes local features
 – E.g. edges, bars & impulses

• Successive layers combine previous features into larger features
 – Until image size is 1x1xD (or at least very small)
 – At which point you have 2D translationally invariant features
 – Which become the input to a fully connected single hidden layer
Training (light)

• The algorithm to train a deep convolutional network is still back propagation
 – Present image to network, calculate output
 – Compute error between actual output and target output
 – Propagate error backwards through the network
 – Update weights based on error gradients

• Last layer is a traditional output layer
 – Often one node per label

• Penultimate layer is a fully-connected hidden layer

• We need to back-propagate error gradients through:
 – Max pooling layers
 – Convolutional layers
Review: updating output layer weights

- **Error function:** \(E = \frac{1}{2} (T_j - O_j)^2 \)
- **Chain rule (no non-linear function):**
-
 \[
 \frac{\delta E}{\delta W_{i,j}} = \frac{\delta E}{\delta O_j} \frac{\delta O_j}{\delta W_{i,j}}
 \]

 \[
 \frac{\delta E}{\delta O_j} = -(T_j - O_j)
 \]

 \[
 \frac{\delta O_j}{\delta W_{i,j}} = X_i
 \]

 \[
 \frac{\delta E}{\delta W_{i,j}} = -(T_j - O_j)X_i
 \]
Review: Updating with non-linear functions

• Chain rule (output): \(\frac{\delta E}{\delta W_{i,j}} = \frac{\delta E}{\delta F_j} \frac{\delta F_j}{\delta O_j} \frac{\delta O_j}{\delta W_{i,j}} \)

• If \(F = \text{Sigmoid} \), then

• So \(F = \text{Sigmoid} \), then \(\frac{\delta S_j}{\delta O_j} = S_j(1 - S_j) \)

• Chain rule for hidden layer:

• So \(\frac{\delta E}{\delta W_{i,j}} = -(T_j - S_j)S_j(1 - S_j)X_i \)

• Where

• Chain rule for hidden layer:

\[
\frac{\delta E}{\delta W_{i,q}} = \left\{ \sum_j \frac{\delta E}{\delta F_j} \frac{\delta F_j}{\delta O_j} \frac{\delta O_j}{\delta W_{i,j}} \right\} \frac{\delta F_q}{\delta O_q} \frac{\delta O_q}{\delta W_{i,j}}
\]

• Where \(\frac{\delta O_j}{\delta F_q} = w_{q,j} \)
Updating max pooling layers

Q: How do we update a max pooling node?
A: We don’t! It has no weights to update!
 (trick question)
Updating convolutional layers

- Consider just one convolutional neuron
 - It feeds a single max pooling element
 - Which feeds elements j
 - We will use q to index both pooling & convolutional neurons

- Let $\frac{\delta E}{\delta P_q}$ be the back-propagated gradient to the output of the pooling node P_q.

- Let $\sum_j \frac{\delta E}{\delta F_j} \frac{\delta F_j}{\delta O_j} \frac{\delta O_j}{\delta P_q}$ be the back-propagated gradient to the output of the pooling node P_q.

Then $\frac{\delta E}{\delta W_{i,q}} = \left\{ \sum_j \frac{\delta E}{\delta F_j} \frac{\delta F_j}{\delta O_j} \frac{\delta O_j}{\delta P_q} \right\} \frac{\delta P_q}{\delta F_q} \frac{\delta F_q}{\delta O_q} \frac{\delta O_q}{\delta W_{i,j}}$
Updating convolutional layers (II)

- \(\delta_{pq} = \begin{cases} 1 & \text{if } F_q \text{ is local maximum} \\ \theta & \text{otherwise} \end{cases} \)
- This makes the update gradients sparse
- This makes the update gradients sparse
- But every convolutional neuron has to share weights
- So average the \(\Delta w_{i,j} \)'s across the layer
- But every convolutional neuron has to share weights
- So average the \(\Delta w_{i,j} \)'s across the layer
... one more thing

• Convolutional layers rarely use tanh or sigmoid
• More often,
 • More often, $F(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$
 – Is non-linear
 • This function:
 – Has trivial derivatives
 – Is non-linear
 – Avoids vanishing (positive) gradients
 – Has trivial derivatives
 – Avoids vanishing (positive) gradients
• This is the 3rd piece of magic
• This is the 3rd piece of magic
Deep Convolutional Nets in practice

• There are three well-known, publicly available deep convolutional nets for object recognition
 – AlexNet (Krizhevsky, Sutskever & Hinton 2012)
 – GoogLeNet (Szegedy, et al 2015)
 – DeCAF (Donahue, et al 2013)

• Why just three?
 – They take many training images and a very long time to train
 – Even given lots of GPUs
AlexNet architecture

- Deep filter banks (max 192)
- Stride layer (instead of max pooling) at beginning
- Window sizes range from 5x5 to 15x15
- Actually, two nets that merge at the end (for efficiency)
- The majority of weights are in the last two fully connected layers

Krizhevsky, et al 2012
Training AlexNet

- Images resized to 256x256
- 60 million parameters
- 1,000 training classes
- 90 training cycles
- 1.2 million training images per cycle
- 6 days on two NVIDIA GTX 580 3GB GPUs