
CS440

Assignment 2

Due Feb 25, 2019

Computer Science Department

Colorado State University

Feb 13, 2019

Preliminaries. The input is an array A of size n that contains all the integers 1; : : : ; n. In A, each

and every integer from 1 to n appears once1.

Input file. The input to your program is called input.txt, which contains a representation of A.

Make sure your program reads from that �le in the current directory. Each entry is put on a

separate line. For instance,
line 1: 4

line 2: 1

line 3: 3

line 4: 2

line 5: 5

represents the array 4 1 3 2 5 with n = 5.

Sorting by transpositions. A transposition T (i; j; k) is identi�ed by three indices 1 � i � j < k � n

and swaps the index intervals [i � � � j] and [j + 1 � � � k] when applied to an array. For instance, let

i = 2, j = 2, and k = 5 and apply T (2; 2; 5) to the array above to obtain 4 3 2 5 1 .

We would like to sort an input array with minimum number of transpositions. All transposi-

tions, independent of their indices, have unit cost. That is, we would like to �nd the minimum k

such that transpositions T1; T2; : : : ; Tk yield 1 � � � n when applied to the input.

Origins of the problem. The problem of sorting by transpositions arose in the context of evolutionary

genomics. DNA molecules break and rearrange during the course of evolution by various events

including transpositions. Generally, we are interested in �nding the minimum number of such

events that transform an ancestral genome to a descendant genome.

Output. Your program should print the minimum number of transpositions needed to sort the

input array. The actual transpositions is not needed. Hence, your program outputs one integer in

the standard output.

1If you are familiar with the permutations terminology, A in an n-permutation in the symmetric group Sn.

1



Grading. We will test your program on 10 di�erent inputs and let it run for 1 minute each. Each

test case is worth 10 points. If the output is correct, you get 10 points; otherwise, you get 0.

Prepare your program to deal with large values of n.

Implementation suggestions. The problem is proven to be NP-Hard. Hence, we do not know any

polynomial-time algorithm for the problem. Moreover, the search space is exponentially large2.

You are free to use any of the optimal search algorithms that we have discussed in class, namely

BFS, Uniform cost, IDS, Bidirectional, or A� and its variants. Be prepared to deal with large input

in 1 minute run time on the 120-unix-lab machines such as denver.

Upload your answer on Canvas in one zip �le or tarball. Include all the code/scripts you have

written in your submission as well as (scanned) handwritten or typed answers.

2jSnj = n!.

2


