Informed Search

Russell and Norvig Chap. 3
Not all search directions are equally promising.
Outline

- Informed: use problem-specific knowledge
- Add a sense of direction to search: work toward the goal
- Heuristic functions: a way to provide information to a search algorithm
What determines a search strategy

function TREE-SEARCH(*problem*) **return** a solution or failure
Initialize frontier using the initial state of problem
do
 if the frontier is empty **then return** failure
 choose leaf node from the frontier
 if node is a goal state **then return** solution
 else expand the node and add resulting nodes to the frontier

A search strategy is determined by the order in which nodes in the frontier are processed
Best-first search

- Informed search strategy: expand the node that appears best
- Factors going into determination of best:
 - Current cost of the solution path
 - Estimated distance to the nearest goal state
- Node is selected for expansion based on an *evaluation function* $f(n)$
- Implementation:
 - *Fringe* is a queue sorted by value of f
 - Special cases: greedy search, A* search
Heuristics

Heuristic: “A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions”

- The heuristic function $h(n)$ estimates cost of the cheapest path from node n to goal node.
- If n is a goal node $h(n)=0$
Greedy best-first search

- Expand node on the frontier closest to goal
- Determination of closest based upon the heuristic function h
Greedy search: An example

- Consider path planning between two cities
- Use the straight line distance heuristic, h_{SLD}

- The greedy solution is (A, C, D)
- The least cost solution is (A, B, D)
A* Search

- Order states by their *total estimated* cost
- Always select the node with the lowest value
- Total estimated cost:
 \[f(n) = g(n) + h(n) \]

- \(g(n)\) the cost to reach \(n\)
- \(h(n)\) the estimated cost to the goal

A* Search

- Order states by their *total estimated* cost
- Always select the node with the lowest value
- Total estimated cost:

\[
f(n) = g(n) + h(n)
\]

- \(g(n) \) the cost to reach \(n \)
- \(h(n) \) the estimated cost to the goal
- Uniform cost search is a special case where \(h(n)=0 \).

Repeated states

- Uninformed search:
 - Add to fringe only if state not already visited.

- A*:
 - If node represents state already visited, update cost according to lower total estimated cost.
Heuristics for the 8 puzzle:

- $h_1 = \text{the number of misplaced tiles}$
 - $h_1(s) = 8$
- $h_2 = \text{the sum of the distances of the tiles from their goal positions (manhattan distance)}$
 - $h_2(s) = 3+1+2+2+2+3+3+2 = 18$
Comparison of heuristics

Even very simple heuristics like h_1 and h_2 can significantly reduce the search cost:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Depth 10</th>
<th>Depth 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterative Deepening</td>
<td>47,127</td>
<td>3,473,941</td>
</tr>
<tr>
<td>A* with h_1</td>
<td>93</td>
<td>539</td>
</tr>
<tr>
<td>A* with h_2</td>
<td>39</td>
<td>113</td>
</tr>
</tbody>
</table>
A* in Romania

Goal: shortest route from Arad to Bucharest
A* in Romania

- Get to Bucharest starting at Arad
 - \(f(\text{Arad}) = c(\text{Arad}, \text{Arad}) + h(\text{Arad}) = 0 + 366 = 366 \)
A* in Romania

After expanding Arad

- Expand Arad and determine $f(n)$:
 - $f(Sibiu) = c(\text{Arad}, \text{Sibiu}) + h(\text{Sibiu}) = 140 + 253 = 393$
 - $f(\text{Timisoara}) = c(\text{Arad}, \text{Timisoara}) + h(\text{Timisoara}) = 118 + 329 = 447$
 - $f(\text{Zerind}) = c(\text{Arad}, \text{Zerind}) + h(\text{Zerind}) = 75 + 374 = 449$
- Best choice is Sibiu
A* in Romania

- Expand Sibiu and determine $f(n)$
 - $f(\text{Arad}) = c(\text{Sibiu}, \text{Arad}) + h(\text{Arad}) = 280 + 366 = 646$
 - $f(\text{Fagaras}) = c(\text{Sibiu}, \text{Fagaras}) + h(\text{Fagaras}) = 239 + 179 = 415$
 - $f(\text{Oradea}) = c(\text{Sibiu}, \text{Oradea}) + h(\text{Oradea}) = 291 + 380 = 671$
 - $f(\text{Rimnicu Vilcea}) = c(\text{Sibiu}, \text{Rimnicu Vilcea}) + h(\text{Rimnicu Vilcea}) = 220 + 192 = 413$

- Best choice is Rimnicu Vilcea
Expand Rimnicu Vilcea and determine $f(n)$
- $f(\text{Craiova}) = c(\text{Rimnicu Vilcea, Craiova}) + h(\text{Craiova}) = 360 + 160 = 526$
- $f(\text{Pitesti}) = c(\text{Rimnicu Vilcea, Pitesti}) + h(\text{Pitesti}) = 317 + 100 = 417$
- $f(\text{Sibiu}) = c(\text{Rimnicu Vilcea, Sibiu}) + h(\text{Sibiu}) = 300 + 253 = 553$

Best choice is Fagaras
A* in Romania

Expand Fagaras and determine $f(n)$
- $f($Sibiu$)=c($Fagaras, Sibiu$)+h($Sibiu$)=338+253=591$
- $f($Bucharest$)=c($Fagaras, Bucharest$)+h($Bucharest$)=450+0=450$

Best choice is Pitesti!
A* in Romania

- Expand Pitesti and determine \(f(n) \)
 - \(f(\text{Bucharest}) = c(\text{Pitesti, Bucharest}) + h(\text{Bucharest}) = 418 + 0 = 418 \)

- Best choice is Bucharest

- Note values along optimal path!!

- Is the solution optimal?
A* in Romania

Whole subtrees of the search tree got pruned!
Admissible heuristics

A heuristic is admissible if it *never overestimates* the cost to reach the goal (optimistic)

Formally:

1. \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \)
2. \(h(n) \geq 0 \) so \(h(G)=0 \) for any goal \(G \).

Examples:

- \(h_{SLD}(n) \) never overestimates the actual road distance
- Heuristics for 8 puzzle
Consistency

A heuristic is *consistent* if:

\[h(n) \leq c(n, a, n’) + h(n’) \]

Given a consistent heuristic:

\[f(n’) = g(n’) + h(n’) \]

\[
\geq g(n) + c(n,a,n’) + h(n’)
\]

\[
\geq g(n) + h(n) = f(n)
\]

A consequence of consistency: \(f(n) \) non-decreasing along a path

c(n, a, n’): cost of getting to n’ from n using action a
Consistency and admissibility

- Consistency implies admissibility
- Hard to find heuristics that are admissible but not consistent
- Focus on consistent heuristics for proving optimality of A*
Consistency and the optimality of A*

Lemma: Whenever A* selects a node \(n \) for expansion the optimal path to that node has been found (assuming consistent heuristic).

Suppose not: Then there is an unexpanded node \(n' \) on the optimal path to \(n \).

From monotonicity: \(f(n) \geq f(n') \), so \(n' \) should have already been expanded.

Therefore whenever a goal node is expanded, it is the lowest cost, i.e. optimal goal node.
A* expansion contours

- Expansion represented as contours of states with equal f value
- A* expands all nodes with $f(n) < C^*$
- A* may expand nodes on the goal contour
Properties of A*

- A* expands all nodes with $f(n) < C^*$
- But there can still be exponentially many such nodes!
Evaluation of A*

- Completeness: YES
 - Unless there are infinitely many nodes with $f < f(G)$, and regardless of the heuristic
Evaluation of A*

- Completeness: YES
- Time complexity:
 - Number of nodes with $f(n) < C^*$ can be exponential
Evaluation of A*

- Completeness: YES
- Time complexity:
 - Number of nodes with $f(n) < C^*$ can be exponential
- Space complexity: also exponential.
Evaluation of A*

- Completeness: YES
- Time complexity:
 - Number of nodes with $f(n) < C^*$ can be exponential
- Space complexity: also exponential.
- Optimality: YES
 - A* does not expand any node with $f(n) > C^*$
- Also optimally efficient (no other optimal algorithm is guaranteed to expand fewer nodes)
Memory-bounded heuristic search

- Some solutions to the A* space problem (maintaining completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - Like IDS, but cutoff information is the f-cost ($g+h$) instead of depth
 - Expands by contour
Memory-bounded heuristic search

- Some solutions to A* space problems (maintaining completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - Recursive best-first search (RBFS)
 - (Simplified) Memory-bounded A* ((S)MA*)
 - SMA*: Drop the worst-leaf node when memory is full (regenerate it later if necessary; back up the value of the forgotten node to its parent)
Comparing heuristics

Heuristics for the 8 puzzle:

- $h_1 = \text{the number of misplaced tiles}$
- $h_2 = \text{the sum of the distances of the tiles from their goal positions (manhattan distance)}$
- For every state s, $h_2(s) \geq h_1(s)$
- We say that h_2 dominates h_1
- A dominating heuristic is better for search. WHY?
Inventing heuristics

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
 - Relaxed 8-puzzle for h_1: a tile can move anywhere.
 - Relaxed 8-puzzle for h_2: a tile can move to any adjacent square.
 - Another relaxation: a tile can move to any blank square.

- Admissibility: The optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Inventing heuristics

- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
- This cost is a lower bound on the cost of the real problem.
- Construct a database of solutions for subproblems.
Inventing heuristics

- Having the best of all worlds:
 given admissible heuristics h_1,\ldots,h_m

$$h(n) = \max(h_1(n),\ldots,h_m(n))$$

is a dominating admissible heuristic.

- Useful in the context of the subproblems approach.
Inventing heuristics

- Learning from experience:
 - Experience = solving lots of 8-puzzles
 - A learning algorithm can be used to predict costs for states that arise during search.