Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 6
CSP example: map coloring

Given a map of Australia, color it using three colors such that no neighboring territories have the same color.
CSP example: map coloring
Constraint satisfaction problems

- A CSP is composed of:
 - A set of variables X_1, X_2, \ldots, X_n with domains (possible values) D_1, D_2, \ldots, D_n
 - A set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that a subset of variables can take, e.g., $V_1 \neq V_2$
Constraint satisfaction problems

- A CSP is composed of:
 - A set of variables X_1, X_2, \ldots, X_n with domains (possible values) D_1, D_2, \ldots, D_n
 - A set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that a subset of variables can take, e.g., $V_1 \neq V_2$

In our example:
- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D_i = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors.
 - E.g. $WA \not\approx NT$ (if the language allows this) or
 - (WA, NT) in $\{(\text{red, green}),(\text{red, blue}),(\text{green, red}),(\text{green, blue}),(\text{blue, red}),(\text{blue, green})\}$
Constraint satisfaction problems

- A state is defined by an assignment of values to some or all variables.
- Consistent assignment: assignment that does not violate the constraints.
- Complete assignment: every variable is mentioned.
- Goal: a complete, legal assignment.

\{WA=\text{red}, NT=\text{green}, Q=\text{red}, NSW=\text{green}, V=\text{red}, SA=\text{blue}, T=\text{green}\}
Constraint satisfaction problems

- Simple example of a **formal representation language**
- CSP benefits
 - Standard representation language
 - Generic goal and successor functions
 - Useful **general-purpose** algorithms with more power than standard search algorithms, including generic heuristics
- Applications:
 - Time table problems (exam/teaching schedules)
 - Assignment problems (who teaches what)
Varieties of CSPs

- Discrete variables
 - Finite domains of size $d \Rightarrow O(d^n)$ complete assignments.
 - The satisfiability problem: a Boolean CSP
 - Infinite domains (integers, strings, etc.)

- Continuous variables
 - Linear constraints solvable in poly time by linear programming methods (dealt with in the field of operations research).

- Our focus: discrete variables and finite domains
Varieties of constraints

- Unary constraints involve a single variable.
 - e.g. \(SA \neq green \)
- Binary constraints involve pairs of variables.
 - e.g. \(SA \neq WA \)
- Global constraints involve an arbitrary number of variables.
- Preference (soft constraints) e.g. \(red \) is better than \(green \) often representable by a cost for each variable assignment; not considered here.
Constraint graph

- **Binary CSP:** each constraint relates two variables
- **Constraint graph:** nodes are variables, edges are constraints
Example: cryptarithmetic puzzles

\[
\begin{array}{c}
T \quad W \quad O \\
+ \quad T \quad W \quad O \\
\hline
F \quad O \quad U \quad R \\
\end{array}
\]

Variables: \(F, T, U, W, R, O, X_1, X_2, X_3 \)
Domains: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
Constraints
\[
\text{alldiff}(F, T, U, W, R, O) \\
O + O = R + 10 \cdot X_1, \text{ etc.}
\]

The constraints are represented by a hypergraph.
CSP as a standard search problem

- Incremental formulation
 - *Initial State*: the empty assignment `{}`.
 - *Successor*: Assign value to unassigned variable provided there is no conflict.
 - *Goal test*: the current assignment is complete.

- Same formulation for all CSPs !!!

- Solution is found at depth n (n variables).
 - What search method would you choose?
Observation: the order of assignment doesn’t matter
⇒ can consider assignment of a single variable at a time. Results in d^n leaves (d: number of values per variable).

Backtracking search: DFS for CSPs with single-variable assignments (backtracks when a variable has no value that can be assigned)

The basic uninformed algorithm for CSP
Sudoku solving

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td></td>
<td>1</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td></td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sudoku solving

Constraints:

\[\text{Alldiff}(A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9) \]
\[\ldots \]
\[\text{Alldiff}(A_1, B_1, C_1, D_1, E_1, F_1, G_1, H_1, I_1) \]
\[\ldots \]
\[\text{Alldiff}(A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3) \]
\[\ldots \]

Can be translated into constraints between pairs of variables.
Let's see if we can figure the value of the center grid point.
Solving Sudoku

“In this essay I tackle the problem of solving every Sudoku puzzle. It turns out to be quite easy (about one page of code for the main idea and two pages for embellishments) using two ideas: constraint propagation and search.”

Peter Norvig

http://norvig.com/sudoku.html
Constraint propagation

- Enforce local consistency
- Propagate the implications of each constraint
Arc consistency

- $X \rightarrow Y$ is arc-consistent iff
 for every value x of X there is some allowed value y of Y

- Example: X and Y can take on the values 0...9 with the constraint: $Y = X^2$. Can use arc consistency to reduce the domains of X and Y:
 - $X \rightarrow Y$ reduce X’s domain to $\{0,1,2,3\}$
 - $Y \rightarrow X$ reduce Y’s domain to $\{0,1,4,9\}$
The Arc Consistency Algorithm

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary csp with components \{X, D, C\}
local variables: queue, a queue of arcs initially the arcs in csp
while queue is not empty do
 \((X_i, X_j) \leftarrow\) REMOVE-FIRST(queue)
 if REVISE(csp, \(X_i, X_j\)) then
 if size of \(D_i\) = 0 then return false
 for each \(X_k\) in \(X_i\).NEIGHBORS – \{\(X_j\)\} do
 add \((X_k, X_i)\) to queue
function REVISE(csp, \(X_i, X_j\)) returns true iff we revise the domain of \(X_i\)
revised \leftarrow false
for each \(x\) in \(D_i\) do
 if no value \(y\) in \(D_j\) allows \((x, y)\) to satisfy the constraints between \(X_i\) and \(X_j\)
 then delete \(x\) from \(D_i\)
 revised \leftarrow true
return revised
Arc consistency limitations

- $X \rightarrow Y$ is **arc-consistent** iff

 for every value x of X there is some allowed y of Y

- Consider mapping Australia with two colors. Each arc is consistent, and yet there is no solution to the CSP.

- So it doesn’t help
Path Consistency

- Looks at triples of variables
 - The set \(\{X_i, X_j\} \) is path-consistent with respect to \(X_m \) if for every assignment consistent with the constraints of \(X_i, X_j \), there is an assignment to \(X_m \) that satisfies the constraints on \(\{X_i, X_m\} \) and \(\{X_m, X_j\} \)

- The PC-2 algorithm achieves path consistency
K-consistency

- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any k-th variable.
- Not practical!
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- **General-purpose** methods/heuristics can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment

return failure
Most constrained variable

\[\text{var} \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(\text{csp}) \]

Choose the variable with the fewest legal values (most constrained variable)
a.k.a. minimum remaining values (MRV) or “fail first” heuristic

- What is the intuition behind this choice?
Most constraining variable

- Select the variable that is involved in the largest number of constraints on other unassigned variables.
- Also called the *degree* heuristic because that variable has the largest degree in the constraint graph.
- Often used as a tie breaker e.g. in conjunction with MRV.
Least constraining value heuristic

- Guides the choice of which value to assign next.
- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables
 - why?

> Allows 1 value for SA

> Allows 0 values for SA
Forward checking

- Can we detect inevitable failure early?
 - *And avoid it later?*
- *Forward checking*: keep track of remaining legal values for unassigned variables.
- Terminate search direction when a variable has no legal values.
Forward checking

- Assign \{WA=\text{red}\}
- Effects on other variables connected by constraints with WA
 - \textit{NT can no longer be red}
 - \textit{SA can no longer be red}
Forward checking

- Assign \{Q=green\}
- Effects on other variables connected by constraints with WA
 - \(NT\) can no longer be green
 - \(NSW\) can no longer be green
 - \(SA\) can no longer be green
Forward checking

- If V is assigned *blue*
- Effects on other variables connected by constraints with WA
 - *SA is empty*
 - *NSW can no longer be blue*
- FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.
Example: 4-Queens Problem

X1
{1,2,3,4}

X2
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}
Example: 4-Queens Problem
Example: 4-Queens Problem
Example: 4-Queens Problem

```plaintext
X1  {1,2,3,4}  X2  { , ,3,4}
X3  { ,2, ,4}  X4  { ,2,3, }
```

```
1  2  3  4
1  *
2  |
3  *
4  |
```
Example: 4-Queens Problem

X1
\{1,2,3,4\}

X2
\{ , ,3,4\}

X3
\{ , , , , \}

X4
\{ ,2,3, , \}
Example: 4-Queens Problem

```
1 2 3 4

1            2
2            3
3            4
4
```

- X1: \{2,3,4\}
- X2: \{1,2,3,4\}
- X3: \{1,2,3,4\}
- X4: \{1,2,3,4\}
Example: 4-Queens Problem
Example: 4-Queens Problem

X1
\{2,3,4\}

X2
\{4\}

X3
\{1,3\}

X4
\{1,3,4\}
Example: 4-Queens Problem

\[\begin{align*}
X1 & \{1, 2, 3, 4\} \\
X2 & \{4\} \\
X3 & \{1, 2, 3\} \\
X4 & \{1, 3\}
\end{align*} \]
Example: 4-Queens Problem

X1 \{1, 2, 3, 4\}

X2 \{1, 2, 3, 4\}

X3 \{1, 2, 3, 4\}

X4 \{1, 2, 3, 4\}
Example: 4-Queens Problem
Example: 4-Queens Problem

- X1: \(\{1,2,3,4\} \)
- X2: \(\{4\} \)
- X3: \(\{1,\} \)
- X4: \(\{3\} \)
Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.

FC does not provide early detection of all failures.
- Once WA=red and Q=green: NT and SA cannot both be blue!

MAC (maintaining arc consistency): calls AC-3 after assigning a value (but only deals with the neighbors of a node that has been assigned a value).
The zebra puzzle

- There are five houses.
- The Englishman lives in the red house.
- The Spaniard owns the dog.
- Coffee is drunk in the green house.
- The Ukrainian drinks tea.
- The green house is immediately to the right of the ivory house.
- The Old Gold smoker owns snails.
- Kools are smoked in the yellow house.
- Milk is drunk in the middle house.
- The Norwegian lives in the first house.
- The man who smokes Chesterfields lives in the house next to the man with the fox.
- Kools are smoked in the house next to the house where the horse is kept.
- The Lucky Strike smoker drinks orange juice.
- The Japanese smokes Parliaments.
- The Norwegian lives next to the blue house.
- Now, who drinks water? Who owns the zebra?
The zebra puzzle
The Zebra Puzzle

[Diagram of the Zebra Puzzle with clues and spaces for answers, including British, Swedish, Danish, Norwegian, German, Pall Mall, Dunhill, Blend, Bluemaster, Prince, Tea, Coffee, Milk, Beer, Water, Dogs, Birds, Cats, Horse, Fish, and related colors and items.]
Local search for CSP

- Local search methods use a “complete” state representation, i.e., all variables assigned.
- To apply to CSPs
 - Allow states with unsatisfied constraints
 - reassign variable values
- Select a variable: random conflicted variable
- Select a value: *min-conflicts heuristic*
 - Value that violates the fewest constraints
 - Hill-climbing like algorithm with the objective function being the number of violated constraints
- Works surprisingly well in problems like n-Queens
Min-Conflicts

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp

for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen conflicted variable from csp.VARIABLES
 value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)
 set var=value in current

return failure
Problem structure

- **How can the problem structure help to find a solution quickly?**
- **Subproblem identification is important:**
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph.
- **Improves performance**
Problem structure

- Suppose each problem has c variables out of a total of n.
- Worst case solution cost is $O(n/c \ d^c)$ instead of $O(d^n)$
- Suppose $n=80$, $c=20$, $d=2$
 - $2^{80} = 4$ billion years at 1 million nodes/sec.
 - $4 \times 2^{20} = .4$ second at 1 million nodes/sec
Tree-structured CSPs

- Theorem: if the constraint graph has no loops then CSP can be solved in $O(nd^2)$ time
- Compare with general CSP, where worst case is $O(d^n)$
Tree-structured CSPs

- Any tree-structured CSP can be solved in time linear in the number of variables.
 - Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering. (label var from X_1 to X_n)
 - For j from n down to 2, apply `REMOVE-INCONSISTENT-VALUES(Parent(X_j), X_j)`
 - For j from 1 to n assign X_j consistently with Parent(X_j)
Tree-structured CSPs

Any tree-structured CSP can be solved in time linear in the number of variables.

Function TREE-CSP-SOLVER(csp) returns a solution or failure

inputs: csp, a CSP with components X, D, C

n ← number of variables in X
assignment ← an empty assignment
root ← any variable in X
X ← TOPOLOGICALSORT(X, root)

for j = n down to 2 do
 MAKE-ARC-CONSISTENT(PARENT(Xj),Xj)
 if it cannot be made consistent then return failure

for i = 1 to n do
 assignment[Xi] ← any consistent value from Di
 if there is no consistent value then return failure

return assignment
Nearly tree-structured CSPs

Can more general constraint graphs be reduced to trees?

Two approaches:
- Remove certain nodes
- Collapse certain nodes
Nearly tree-structured CSPs

- Idea: assign values to some variables so that the remaining variables form a tree.
- Assign \(\{SA=x\} \leftarrow \text{cycle cutset} \)
 - Remove any values from the other variables that are inconsistent.
 - The selected value for SA could be the wrong: have to try all of them.
Nearly tree-structured CSPs

- This approach is effective if cycle cutset is small.
- Finding the smallest cycle cutset is NP-hard
 - Approximation algorithms exist
- This approach is called cutset conditioning.
Summary

- CSPs are a special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values.
- Backtracking = depth-first search with one variable assigned per node.
- Variable ordering and value selection heuristics help significantly.
- Forward checking prevents assignments that lead to failure.
- Constraint propagation does additional work to constrain values and detect inconsistencies.
- Structure of CSP affects its complexity. Tree structured CSPs can be solved in linear time.
Interim class summary

- We have been studying ways for agents to solve problems.
- **Search**
 - Uninformed search
 - Easy solution for simple problems
 - Basis for more sophisticated solutions
 - Informed search
 - Information = problem solving power
 - Adversarial search
 - $\alpha\beta$-search for play against optimal opponent
 - Early cut-off when necessary
 - Constraint satisfaction problems
- **What’s next?**
 - Logical inference
 - Probabilistic inference
 - Machine learning
 - Other fun stuff – motion planning, structural biology