Proof Methods for Propositional Logic

Russell and Norvig Chapter 7
Logical equivalence

- Two sentences are logically equivalent iff they are true in the same models: \(\alpha \equiv \beta \) iff \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

A sentence is **valid** (a tautology) if it is true in **all** models
 e.g., True, \(A \lor \neg A \), \(A \Rightarrow A \)\text{,} \((A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the **Deduction Theorem**:
 \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

A sentence is **satisfiable** if it is true in **some** model
 e.g., \(A \lor B \)

A sentence is **unsatisfiable** if it is false in **all** models
 e.g., \(A \land \neg A \)

Satisfiability is connected to inference via the following:
 \(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable
 (known as proof by contradiction)
Inference rules

- Modus Ponens

\[
A \implies B, \quad A \\
\hline
B
\]

Example:
“raining implies soggy courts”, “raining”
Infer: “soggy courts”
Example

- KB: \{A \Rightarrow B, B \Rightarrow C, A\}
- Is C entailed?
- Yes.

<table>
<thead>
<tr>
<th>Given</th>
<th>Rule</th>
<th>Inferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>A \Rightarrow B, A</td>
<td>Modus Ponens</td>
<td>B</td>
</tr>
<tr>
<td>B \Rightarrow C, B</td>
<td>Modus Ponens</td>
<td>C</td>
</tr>
</tbody>
</table>
Inference rules (cont.)

- **Modus Tollens**
 \[
 A \Rightarrow B, \neg B \\
 \hline
 \neg A
 \]

 Example:
 "raining implies soggy courts", "courts not soggy"
 Infer: "not raining"

- **And-elimination**
 \[
 A \land B \\
 \hline
 A
 \]
Reminder: The Wumpus World

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - Squares adjacent to wumpus: smelly
 - Squares adjacent to pit: breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square

- **Sensors:** Stench, Breeze, Glitter, Bump
- **Actuators:** Left turn, Right turn, Forward, Grab, Release, Shoot
Inference in the wumpus world

Given:
1. \(\neg B_{1,1} \)
2. \(B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)

Let’s make some inferences:
1. \((B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1}) \) (By definition of the biconditional)
2. \((P_{1,2} \lor P_{2,1}) \implies B_{1,1} \) (And-elimination)
3. \(\neg B_{1,1} \implies \neg (P_{1,2} \lor P_{2,1}) \) (equivalence with contrapositive)
4. \(\neg (P_{1,2} \lor P_{2,1}) \) (modus ponens)
5. \(\neg P_{1,2} \land \neg P_{2,1} \) (DeMorgan’s rule)
6. \(\neg P_{1,2} \) (And-elimination)
7. \(\neg P_{2,1} \) (And-elimination)
Inference using inference rules

- Inference using inference rules is sound.
- Is it complete? Depends if we have a rich enough set of rules.
- Inference is a search problem.
- **Resolution:** a sound inference rule that when coupled with a complete search method yields a complete inference algorithm
More inference

- Recall that when we were at (2,1) we could not decide on a safe move, so we backtracked, and explored (1,2), which yielded $\neg B_{1,2}$. This yields $\neg P_{2,2} \land \neg P_{1,3}$.

- Now we can consider the implications of $B_{2,1}$.
Resolution Rule

1. $\neg P_{2,2}, \neg P_{1,1}$
2. $B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
3. $B_{2,1} \implies (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ (biconditional elimination)
4. $P_{1,1} \lor P_{2,2} \lor P_{3,1}$ (modus ponens)
5. $P_{1,1} \lor P_{3,1}$ (resolution rule)
6. $P_{3,1}$ (resolution rule)

The resolution rule: if there is a pit in (1,1) or (3,1), and it’s not in (1,1), then it’s in (3,1).

$P_{1,1} \lor P_{3,1}, \neg P_{3,1}$

$\underline{\neg P_{1,1}}$

$P_{3,1}$
Resolution Rule

Unit Resolution inference rule:

\[
\begin{align*}
& l_1 \lor \ldots \lor l_k, & m \\
\end{align*}
\]

\[
\begin{align*}
& l_1 \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_k
\end{align*}
\]

where \(l_i \) and \(m \) are complementary literals.

Full Resolution

\[
\begin{align*}
& l_1 \lor \ldots \lor l_k, & m_1 \lor \ldots \lor m_n \\
\end{align*}
\]

\[
\begin{align*}
& l_1 \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_k \lor m_1 \lor \ldots \lor m_j \lor m_{j+1} \lor \ldots \lor m_n
\end{align*}
\]

where \(l_i \) and \(m_j \) are complementary literals.
Resolution rule is sound

For simplicity let’s consider clauses of length two:

\[l_1 \lor l_2, \quad \neg l_2 \lor l_3 \]

\[l_1 \lor l_3 \]

To demonstrate the soundness of resolution consider the values \(l_2 \) can take:

- If \(l_2 \) is True, then since we know that \(\neg l_2 \lor l_3 \) holds, it must be the case that \(l_3 \) is True.

- If \(l_2 \) is False, then since we know that \(l_1 \lor l_2 \) holds, it must be the case that \(l_1 \) is True.
Resolution Rule

- Properties of the resolution rule:
 - Sound
 - Complete

- Resolution can be applied only to disjunctions of literals. How can it be complete?

- Turns out any knowledgebase can be expressed as a conjunction of disjunctions (conjunctive normal form, CNF).

- Example: \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)
Conversion to CNF

\(B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).

 \((B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})\)

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})\)

3. Move \(\neg \) inwards using de Morgan's rules and double-negation:

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})\)

4. Apply distributive law \((\land \text{ over } \lor) \) and flatten:

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})\)
Converting to CNF

Every sentence can be converted to CNF

1. Replace $\alpha \leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
2. Replace $\alpha \Rightarrow \beta$ with $(\neg \alpha \lor \beta)$
3. Move \neg “inward”
 1. Replace $\neg (\neg \alpha)$ with α
 2. Replace $\neg (\alpha \land \beta)$ with $(\neg \alpha \lor \neg \beta)$
 3. Replace $\neg (\alpha \lor \beta)$ with $(\neg \alpha \land \neg \beta)$
4. Replace $(\alpha \lor (\beta \land \gamma))$ with $(\alpha \lor \beta) \land (\alpha \lor \gamma)$
While converting expressions, note that

- \(((\alpha \lor \beta) \lor \gamma)\) is equivalent to \((\alpha \lor \beta \lor \gamma)\)
- \(((\alpha \land \beta) \land \gamma)\) is equivalent to \((\alpha \land \beta \land \gamma)\)

Why does this algorithm work?

- Because \(\Rightarrow\) and \(\Leftrightarrow\) are eliminated
- Because \(\neg\) is always directly attached to literals
- Because what is left must be \(\land\)'s and \(\lor\)'s, and they can be distributed over to make CNF clauses
Using resolution

- Even if our KB entails a sentence α, resolution is not guaranteed to produce α.
- To get around this we use proof by contradiction, i.e., show that $KB \land \neg \alpha$ is unsatisfiable.
- Resolution is complete with respect to proof by contradiction.
Example of proof by resolution

\[KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \]

in CNF... \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})\)

\(\alpha = \neg P_{1,2}\)

Resolution yielded the empty clause.

The empty clause is \textit{False} (a disjunction is \textit{True} only if at least one of its disjuncts is true).
Proof by resolution

How do we automate the inference process?

- Step 1: assume the negation of the consequent and add it to the knowledgebase
- Step 2: convert KB to CNF
 - i.e. a collection of disjunctive clauses
- Step 3: Repeatedly apply resolution until:
 - It produces an empty clause (contradiction), in which case the consequent is proven, or
 - No more terms can be resolved, in which case the consequent cannot be proven
function PL-RESOLUTION(KB, α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$

new ← {}

loop do
 for each pair of clauses C_i, C_j in clauses do
 resolvents ← PL-RESOLVE(C_i, C_j)
 if resolvents contains the empty clause then return true
 new ← new U resolvents
 if new \subseteq clauses then return false

clauses ← clauses U new
Another example

- If it rains, I get wet.
- If I’m wet I get mad.
- Given that I’m not mad, prove that it’s not raining.
Inference for Horn clauses

Horn Form

KB = conjunction of Horn clauses
Horn clause =
 propositional symbol; or
 (conjunction of symbols) ⇒ symbol

Example of a Horn clause: (C ∧ D) ⇒ B

Example of a Horn KB: C ∧ (B ⇒ A) ∧ ((C ∧ D) ⇒ B)

Horn form is a special case of CNF where a clause can have at most one positive literal
Inference for Horn clauses

Horn Form

KB = conjunction of Horn clauses
Horn clause =
 propositional symbol; or
 (conjunction of symbols) ⇒ symbol
Example: $C \land (B \Rightarrow A) \land ((C \land D) \Rightarrow B)$

Modus Ponens is a natural way to make inference in Horn KBs

\[\alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta \]

\[\beta \]

Successive application of modus ponens leads to algorithms that are sound and complete, and run in linear time
Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB
 - add its conclusion to the KB, until query is found

\[
\begin{align*}
P & \Rightarrow Q \\
L \land M & \Rightarrow P \\
B \land L & \Rightarrow M \\
A \land P & \Rightarrow L \\
A \land B & \Rightarrow L \\
A & \\
B & \\
Q & \\
M & \\
L & \\
A & \\
B &
\end{align*}
\]
Forward chaining example
Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) **returns** true or false

inputs: KB, knowledge base, a set of propositional definite clauses
q, the query, a propositional symbol

`count` ← a table, where `count[c]` is the number of symbols in c’s premise

`inferred` ← a table, where `inferred[s]` is initially false for all symbols

`agenda` ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty **do**

p ← POP(agenda)

if p=q then return true

if inferred[p]=false then

 inferred[p] ← true

for each clause c in KB where p is in c.PREMISE do

 decrement `count[c]`

 if `count[c]=0` then add c.CONCLUSION to agenda

return false

Forward chaining is sound and complete for Horn KB
Backward chaining

Idea: work backwards from the query q:

- check if q is known already, or
- prove by backward chaining all premises of some rule concluding q
Backward chaining example
Backward chaining

Idea: work backwards from the query \(q \):
check if \(q \) is known already, or
prove by backward chaining all premises of some rule concluding \(q \)

Avoid loops:
check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
has already been proved true, or
has already failed
Forward vs. backward chaining

- FC is **data-driven**
- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., What courses do I need to take to graduate?

- Complexity of BC can be **much less** than linear in size of KB
Efficient propositional inference by model checking

Two families of efficient algorithms for satisfiability:

- **Backtracking search algorithms:**
 - DPLL algorithm (Davis, Putnam, Logemann, Loveland)

- **Local search algorithms**
 - **WalkSAT algorithm:**
 - Start with a random assignment
 - At each iteration pick an unsatisfied clause and pick a symbol in the clause to flip; alternate between:
 - Pick the symbol that minimizes the number of unsatisfied clauses
 - Pick a random symbol

Is **WalkSAT** sound? Complete?
In the wumpus world

A wumpus-world agent using propositional logic:

\[
\neg P_{1,1}, \neg W_{1,1}
\]

\[B_{x,y} \iff (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y})\]

\[S_{x,y} \iff (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y})\]

\[W_{1,1} \lor W_{1,2} \lor \ldots \lor W_{4,4}\]

\[\neg W_{1,1} \lor \neg W_{1,2}\]

\[\neg W_{1,1} \lor \neg W_{1,3}\]

\[\ldots\]

⇒ 64 distinct proposition symbols, 155 sentences
Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions.

- Basic concepts of logic:
 - **syntax**: formal structure of sentences
 - **semantics**: truth of sentences wrt models
 - **entailment**: truth of one sentence given a knowledge base
 - **inference**: deriving sentences from other sentences
 - **soundness**: derivations produce only entailed sentences
 - **completeness**: derivations can produce all entailed sentences
Summary

Methods for inference

- **Resolution** is complete for propositional logic
- **Forward, backward chaining** are linear-time, complete for Horn clauses

General observation:

- Propositional logic lacks expressive power