Statistical learning

Russell and Norvig Chapter 20
Statistical learning

Example:
Suppose your favorite candy comes in two flavors: cherry and lime (both wrapped in the same opaque wrapper).
The candy is sold in five types of bags that are indistinguishable:
- H1: 100% cherry
- H2: 75% cherry, 25% lime
- H3: 50% cherry, 50% lime
- H4: 25% cherry, 75% lime
- H5: 100% lime

You open a new bag of candy, and start having some: your data are a vector of observations \(d = d_1, \ldots, d_N \)

Objective: predict the color of the next piece of candy
Given the data we can evaluate the probability of the data under each hypothesis:

\[P(h_i | d) = \alpha P(d | h_i) P(h_i) \]

- \(P(h_i) \) - the prior (say (0.1,0.2,0.4,0.2,0.1) for our example)
- \(P(d|h_i) \) - the likelihood of the data

Typically we make the assumption that the observations are i.i.d. (independent, identically distributed) so:

\[P(d|h_i) = \prod_j P(d_j | h_i) \]

- For example \(P(lime,lime,lime,lime \mid h_3) = 0.5^4 \)
Maximum a posteriori (MAP)

- The most probable hypothesis (h_{MAP}): the one that maximizes $P(h_i|d)$

\[
P(h_i|d) = \alpha P(d|h_i)P(h_i)
\]
Maximum likelihood

- MAP is chosen to maximize

\[P(h_i | d) = \alpha P(d | h_i) P(h_i) \]

- Suppose we have no reason to prefer one hypothesis over another (uniform prior) then MAP reduces to choosing \(h_i \) that maximizes \(P(d | h_i) \).

- This is the \textit{maximum likelihood} hypothesis, \(h_{ML} \).
Suppose we buy a bag of cherry-lime candy from a manufacturer whose lime-cherry proportions are unknown.

Hypothesis: \(h_\theta \) where \(\theta \) is the proportion of cherry candy

The likelihood of a dataset:

\[
P(d|h_\theta) = \prod_{j=1}^{N} P(d_j|h_\theta) = \theta^c (1 - \theta)^{N-c}
\]

c - number of cherry candy picked
Maximum likelihood parameter learning

- For convenience we work with the log likelihood:

\[L(d|h_\theta) = \log P(d|h_\theta) = \sum_{j=1}^{N} \log P(d_j|h_\theta) = c \log \theta + (N - c) \log(1 - \theta) \]

- The maximum likelihood value of \(\theta \):

\[\frac{dL(d|h_\theta)}{d\theta} = \frac{c}{\theta} - \frac{N - c}{1 - \theta} = 0 \quad \Rightarrow \quad \theta = \frac{c}{N} \]

- The ML hypothesis states that the proportion of cherry candy is equal to the proportion observed so far.
Task: classify an instance based on a vector of attribute values, x

$$c_{MAP} = \arg \max_j P(c_j | x)$$

c_j - the possible classes

We model each class separately using a probability distribution $P(x | c_j)$

$$c_{MAP} = \arg \max_j \frac{P(x | c_j) P(c_j)}{P(x)}$$

Need to make simplifying assumptions on the form of $P(x | c_j)$
Naïve Bayes classifier

Conditional independence assumption: features are independent of each other given the class

\[P(X_1, \ldots, X_5 | C) = P(X_1 | C) P(X_2 | C) \cdots P(X_5 | C) \]
Learning the model

\[P(X_1, \ldots, X_5 | C) = P(X_1 | C) P(X_2 | C) \cdots P(X_5 | C) \]

- Estimate parameters using maximum likelihood:

\[
P(c_j) = \frac{N(C = c_j)}{N} \quad P(x_i | c_j) = \frac{N(X_i = x_i, C_j = c_j)}{N(C = c_j)}
\]
Learning the model

What happens if we have no examples where $X_5=true$ and $Flu=false$?

The model gives $P(Flu = false \mid X_5=true) = 0$

Solution: pseudo-counts
Pseudo-counts

\[P(x_i | c_j) = \frac{N(X_i = x_i, C_j = c_j) + 1}{N(C = c_j) + |X_i|} \]

- Pseudo-counts are a way to avoid overfitting -- taking into account what we haven’t observed.
Properties of Naïve Bayes

- Number of parameters linear in number of attributes
- Simple learning algorithm: no search involved in finding h_{ML}.
- **Training time:** linear in number of training examples and number of features.
- **Classification time:** (of a single example) linear in number of features.
- Performs reasonably well on a variety of problems
Underflow prevention

- Multiplying lots of probabilities, can result in floating-point underflow.

- Since \(\log(xy) = \log(x) + \log(y) \), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.

- Standard trick for probabilistic models

\[
P(X_1, \ldots, X_5|C) = P(X_1|C)P(X_2|C) \cdots P(X_5|C)
\]
Text categorization

- How to represent a document?

- Bag of words representation: a document represented by a vector that counts how many times each word appears in it.

\[
P(X_i = x_i | C = c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + |X_i|}
\]