Plan for Today and Beginning Next week (Lexical Analysis)

Regular Expressions

Finite State Machines
- DFAs: Deterministic Finite Automata
- Complications
- NFAs: Non Deterministic Finite State Automata

From Regular Expressions to NFAs
From NFAs to DFAs

Tokens for Example MeggyJava program

import meggy.Meggy;

class PA3Flower {
 public static void main(String[] whatever){
 {
 // Upper left petal, clockwise
 Meggy.setPixel((byte)2, (byte)4, Meggy.Color.VIOLET);
 Meggy.setPixel((byte)2, (byte)1, Meggy.Color.VIOLET);
 ...
 }
 }
}

Tokens: Symbol(IMPORT,null), Symbol(MEGGY,null),
 Symbol(SEMI,null), Symbol(CLASS,null),
 Symbol(ID,"PA3Flower"), Symbol(LBRACE,null), ...

Structure of a Typical Compiler

Analysis
- character stream
 - lexical analysis
 - tokens "words"
 - syntactic analysis
 - AST "sentences"
 - semantic analysis
 - annotated AST
 - interpreter

Synthesis
- IR code generation
- IR
 - optimization
 - code generation
 - target language

About The Slides on Languages and Finite Automata

Slides Originally Developed by Prof. Costas Busch (2004)
- Many thanks to Prof. Busch for developing the original slide set.
- Adapted with permission by Prof. Dan Massey (Spring 2007)
- Subsequent modifications, many thanks to Prof. Massey for CS 301 slides
- Adapted with permission by Prof. Michelle Strout (Spring 2011)
- Adapted for use in CS 453
- Adapted by Wim Bohm(added regular expr → NFA → DFA, Spr2012)
Languages

A language is a set of **strings**
(sometimes called sentences)

String: A finite sequence of letters

Examples: “cat”, “dog”, “house”, …

Defined over a fixed alphabet:

\[\Sigma = \{a, b, c, \ldots, z\} \]

Empty String

A string with no letters: \(\varepsilon \) (sometimes \(\lambda \) is used)

Observations:

\[|\varepsilon| = 0 \]

\[\varepsilon w = w \varepsilon = w \]

\[\varepsilon abba = abba \varepsilon = abba \]

Regular Expressions

Regular expressions describe regular languages
You have probably seen them in OSs / editors

Example: \((a \mid (b)(c))^*\)

describes the language

\[L((a \mid (b)(c))^*) = \{\varepsilon, a, bc, aa, abc, bca, \ldots\} \]

Recursive Definition for Specifying Regular Expressions

Primitive regular expressions: \(\emptyset, \varepsilon, \alpha \)

where \(\alpha \in \Sigma \), some alphabet

Given regular expressions \(r_1 \) and \(r_2 \)

\[r_1 \mid r_2 \]

\[r_1 \cdot r_2 \]

\[r_1^* \]

\[(r_1) \]

Are regular expressions
Regular operators

choice: $A | B$ a string from $L(A)$ or from $L(B)$
concatenation: AB a string from $L(A)$ followed by a string from $L(B)$
repetition: A^* 0 or more concatenations of strings from $L(A)$
A^+ 1 or more

Concatenation has precedence over choice: $A | B C$ vs. $(A | B)C$

More syntactic sugar, used in scanner generators:
- $[abc]$ means a or b or c
- $[\t\n\]$ means tab, newline, or space
- $[a-z]$ means a,b,c,…, or z

Example Regular Expressions and Regular Definitions

Regular definition:
- name : regular expression
 name can then be used in other regular expressions

Keywords “print”, “while”

Operations: “+”, “-”, “*”

Identifiers:
- let : [a-zA-Z] // chose from a to z or A to Z
- dig : [0-9]
- id : let (let | dig)*

Numbers: $\text{dig}^+ = \text{dig} \text{dig}^*$

Finite Automaton

Input

String

Finite Automaton

Output

String

Finite Accepter

Input

String

Finite Automaton

Output

“Accept” or “Reject”
State Transition Graph

- Finite Accepter

Initial Configuration

Input String

Reading the Input
Would it be possible to accept the empty string?

Output: “reject”
Input finished

Output: “accept”
Which strings are accepted?

Output: “reject”
Formalities

Deterministic Finite Automaton (DFA)

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \): set of states
- \(\Sigma \): input alphabet
- \(\delta \): transition function
- \(q_0 \): initial state
- \(F \): set of final (accepting) states

Set of States \(Q \)

\[Q = \{ q_0, q_1, q_2, q_3, q_4, q_5 \} \]

Input Alphabet \(\Sigma \)

\[\Sigma = \{ a, b \} \]
Set of Final States \(F \)

\[F = \{ q_4 \} \]

Transition Function \(\delta \)

\[\delta : Q \times \Sigma \rightarrow Q \]

\[\delta(q_0, a) = q_1 \]

\[\delta(q_0, b) = q_5 \]
Complications

1. "1234" is an NUMBER but what about the "123" in "1234" or the "23", etc. Also, the scanner must recognize many tokens, not one, only stopping at end of file.

3. "if" is a keyword or reserved word IF, but "if" is also defined by the reg. exp. for identifier ID. We want to recognize IF.

4. We want to discard white space and comments.

5. "123" is a NUMBER but so is "235" and so is "0", just as "a" is an ID and so is "bcd", we want to recognize a token, but add attributes to it.

Complications 1

1. "1234" is an NUMBER but what about the "123" in "1234" or the "23", etc. Also, the scanner must recognize many tokens, not one, only stopping at end of file. So: recognize the largest string defined by some regular expression, only stop getting more input if there is no more match. This introduces the need to reconsider a character, as it is the first of the next token.

\[\delta(q_2, b) = q_3 \]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_5)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_5)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_5)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_4)</td>
<td>(q_5)</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(q_5)</td>
<td>(q_5)</td>
</tr>
<tr>
<td>(q_5)</td>
<td>(q_5)</td>
<td>(q_5)</td>
</tr>
</tbody>
</table>

E.g. \(fname(a,bcd) ; \)

Would be scanned as

ID OPEN ID COMMA ID CLOSE SEMI EOF

Scanning \(fname \) would consume , which would be put back and then recognized as OPEN.
Complication 2

2. "if" is a keyword or reserved word IF, but "if" is also defined by the reg. exp. for identifier ID, we want to recognize IF, so
Have some way of determining which token (IF or ID) is recognized.

This can be done using priority, e.g. in scanner generators an earlier definition has a higher priority than a later one.

By putting the definition for IF before the definition for ID in the input for the scanner generator, we get the desired result.

What about the string “ifyouleavemenow”?

Complication 3

3. we want to discard white space and comments and not bother the parser with these. So:

in scanner generators, we can
specify, using a regular expression, white space e.g. [\t\n]
and return no token, i.e. move to the next

specify comments using a (NASTY) regular expression and again
return no token, move to the next

Complication 4

4. "123" is a NUMBER but so is "235" and so is "0", just as "a" is an ID and so is "bcd", we want to recognize a token, but add attributes to it. So,

Scanners return Symbols, not tokens.
A Symbol is a (token, tokenValue) pair,
e.g. (NUMBER,123) or (ID,"a").

Often more information is added to a symbol, e.g. line number and position (as we will do in Meggy.Java)

(Non) Deterministic Finite State Automata

A Deterministic Finite State Automaton (DFA) has disjoint character sets on its edges, i.e. the choice “which state is next” is deterministic.

A Non-deterministic Finite State Automaton (NFA) does NOT, i.e. it can have character sets on its edges that overlap (non empty intersection), and empty sets on the some edges (labeled ε).

NFAs are used in the translation from regular expressions to FSAs. E.g. when we combine the reg. exp for IF with the reg.exp for ID by just merging the two Transition graphs, we would get an NFA.

NFAs are a first step in creating a DFA for a scanner. The NFA is then transformed into a DFA.
From regular expressions to NFAs

<table>
<thead>
<tr>
<th>regexp</th>
<th>a</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple letter “a”</td>
<td>accept state of the NFA for A</td>
<td></td>
</tr>
<tr>
<td>empty string</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AB concat the NFAs

A | B

A|B split merge them

ε | ε

A* build a loop

ε

The Problem

DFAs are easy to execute (table driven interpretation)

NFAs are easy to build from reg. exps, but hard to execute
we would need some form of guessing, implemented by backtracking

To build a DFA from an NFA we avoid the back track by taking all choices in the NFA at once, a move with a character or ε gets us to a set of states in the NFA, which will become one state in the DFA.

We keep doing this until we have exhausted all possibilities.
This mechanism is called transitive closure
(This ends because there is only a finite set of subsets of NFA states. How many are there?)

Example: IF and ID

let : [a-z]
dig : [0-9]
tok : if | id
if : “i” “f”
id : let (let | dig)*

Example: NFA for IF and ID

IF has priority over ID.
From 0, with ε we can get to states 1 and 4
this is called an ε-closure
We can now simulate the behavior of the NFA and build a table for the DFA making character moves plus ε-closures
NFA simulation scanning “in”

<table>
<thead>
<tr>
<th>DFAstate</th>
<th>NFAstates</th>
<th>Move</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1,4</td>
<td>i</td>
<td>2,5,8,6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>i</td>
<td>2,5,6,8</td>
</tr>
</tbody>
</table>

- Only one of the states in 6,7,8 is an accepting state, an ID accepting state, so “in” is an ID

Definitions: edge(s,c) and closure

- **edge(s,c):** the set of all NFA states reachable from state s following an edge with character c
- **closure(S):** the set of all states reachable from S with no chars or ε

\[\text{closure}(S) = T = S \cup \bigcup_{s \in T} \text{edge}(s, \varepsilon) \]

T=S
repeat T’=T;
forall s in T’ { T’=T; T = T’\cup(\bigcup_{s \in T’} \text{edge}(s, \varepsilon)) }
until T’==T

This transitive closure algorithm terminates because there is a finite number of states in the NFA

DFAedge and NFA Simulation

Suppose we are in state DFA d = \{s_0, s_k, s_i\}

By moving with character c from d we reach a set of new NFA states, call these DFAedge(d,c), a new or already existing DFA state

\[\text{DFAedge}(d, c) = \text{closure}\left(\bigcup_{s \in d} \text{edge}(s, c)\right) \]

NFA simulation:

- Let the input string be c_1...c_k
- d = closure({s_1}) // s_1 the start state of the NFA
- for i from 1 to k
 - d = DFAedge(d, c_i)
Constructing a DFA with closure and DFAEdge

state \(d_1 = \text{closure}(s_1) \) the closure of the start state of the NFA

make new states by moving from existing states with a character \(c \), using DFAEdge\((d, c)\); record these in the transition table

make accepts in the transition table, if there is an accepting state in \(d \), decide priority if more than one accept state.

Instead of characters we use non-overlapping (DFA) character classes to keep the table manageable.

The transition table for IF ID

<table>
<thead>
<tr>
<th>(p)</th>
<th>NFAstates((p))</th>
<th>i</th>
<th>f</th>
<th>a-h</th>
<th>a-e.g-z</th>
<th>a-z,0-9</th>
<th>ACPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1,4}</td>
<td></td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{2,5,6,8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{3,6,7,8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>{6,7,8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>{5,6,8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suggested Exercise

Build an NFA and a DFA for integer and float literals

dot: "."

dig: [0-9]

int-lit: dig+

float-lit: dig* dot dig+