Topics covered in this lecture

- Map Reduce

Counting number occurrences of each word in a large collection of documents

```java
map (String key, String value)
    //key: document name
    //value: document contents
    for each word w in value
        EmitIntermediate(w, "1")
```

Counting number occurrences of each word in a large collection of documents

```java
reduce (String key, Iterator values)
    //key: a word
    //value: a list of counts
    int result = 0;
    for each v in values
        result += ParseInt(v);
    Emit(AsString(result));
```

Sums together all counts emitted for a particular word.

Frequently asked questions from the previous class survey

Materials based on

JEFFREY DEAN and SANJAY GHEMAWAT. MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150
MapReduce specification object contains
- Names of
 - Input
 - Output
- Tuning parameters

Map and reduce functions have associated types drawn from different domains

\[\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2) \]
\[\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2) \]

What’s passed to-and-from user-defined functions?
- Strings
- User code converts between
 - String
 - Appropriate types

EXAMPLES

Programs expressed as MapReduce computations: Distributed Grep
- Map
 - Emit line if it matches specified pattern
- Reduce
 - Just copy intermediate data to the output
 - The reducer here is an identity function

Counts of URL access frequency
- Map
 - Process logs of web page requests
 - Output \(<\text{URL}, 1>\)
- Reduce
 - Add together all values for a particular URL
 - Output \(<\text{URL}, \text{total count}>\)
Reverse Web-link Graph

- **Map**
 - Outputs <target, source> pair for each target URL found in page source
- **Reduce**
 - Concatenate list of all sources for a target URL
 - Output <target, list(source)>

Term-Vector per Host

- **Map**
 - Emit <hostname, term vector>
 - For each input document
- **Reduce**
 - Concatenate list of all sources for a target URL
 - Output <target, list(source)>

Inverted Index

- **Map**
 - Parse each document
 - Emit <word, document ID>
- **Reduce**
 - Accept all pairs for a given word
 - Sort document IDs
 - Emit <word, list(document ID)> pair

Implementation

- Machines are commodity machines
- **GFS** is used to manage the data stored on the disks

Execution Overview – Part I

- **Maps** distributed across multiple machines
- Automatic partitioning of data into M splits
- Splits are processed concurrently on different machines
Execution Overview – Part II

- Partition intermediate key space into R pieces
- E.g. hash(key) mod R
- User specified parameters
 - Partitioning function
 - Number of partitions (R)

Execution Overview

Partitioning function

User specified parameters

Execution Overview: Step I
The MapReduce library

- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines

Execution Overview: Step II
Program copies

- One of the copies is a Master
- There are M map tasks and R reduce tasks to assign
 - Master
 - Picks idle workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III
Workers that are assigned a map task

- Read contents of their input split
- Parses <key, value> pairs out of the input data
- Pass each pair to user-defined Map function
- Intermediate <key, value> pairs from Maps
 - Buffered in Memory

Execution Overview: Step IV
Writing to disk

- Periodically, buffered pairs are written to disk
 - These writes are partitioned
 - By the partitioning function
 - Locations of buffered pairs on local disk
 - Reported to back to Master
 - Master forwards these locations to reduce workers
Execution Overview: Step V
Reading Intermediate data
- Master notifies Reduce worker about locations
- Reduce worker reads buffered data from the local disks of Maps
- Read all intermediate data; sort by intermediate key
 - All occurrences of the same key are grouped together
 - Many different keys map to the same Reduce task

Execution Overview: Step VI
Processing data at the Reduce worker
- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of intermediate values to Reduce function
- Output of the Reduce function is appended
 - To output file of the reduce partition

Execution Overview: Step VII
Waking up the user
- After all Map & Reduce tasks have been completed
- Control returns to the user code

Master Data Structures
- For each Map and Reduce task
 - State: {idle, in-progress, completed}
 - Worker machine identity
- For each completed Map task store
 - Location and sizes of R intermediate file regions
 - Information pushed incrementally to in-progress Reduce tasks

Worker failures
- Master pings worker periodically
- After a certain number of failed pings
 - Master marks worker as having failed
- Any Map task completed by failed worker?
 - Reset to initial idle state
 - Eligible for rescheduling

Fault Tolerance
Why completed Map tasks are reexecuted

- Output is stored on local disk of failed machine
- Inaccessible
- All reduce workers are notified about reexecution
- Reduce tasks do not need to be reexecuted
- Output stored in GFS

Master Failures

- Could checkpoint at the Master
 - Data structures are well-defined
- However, since there is only one Master
 - Assumption is that failure is unlikely
- If there is a Master failure?
 - MapReduce computation is aborted!
 - Client must check and retry MapReduce operation

Semantics in the presence of failures:
If map and reduce operators are deterministic

- Distributed execution output is identical to
 - Non-faulting, sequential execution
- Atomic commits of map and reduce task outputs help achieve this

Each in-progress task writes output to private temporary files

- Map task produces R such files
 - When task completes, Map sends this info to the Master
- Reduce task produces one such file
 - When reduce completes, worker atomically:
 - Renames temporary file to final output file
 - Uses GFS to do this

Locality

- Conserve network bandwidth
- Input files managed by GFS
- MapReduce master takes location of input files into account
- Schedule task on machine that contains a replica of the input slice

Locality and its impact when running large MapReduce tasks

- Most input data is read locally
- Consumes no network bandwidth
Task Granularity

- Subdivide map phase into M pieces
- Subdivide reduce phase into R pieces
- $M, R >>$ number of worker machines
- Each worker performing many different tasks:
 - Improves dynamic load balancing
 - Speeds up recovery during failures

Practical bounds on how large M and R can be

- Master must make $O(M + R)$ scheduling decisions
- Keep $O(MR)$ state in memory

Typical values used at Google

- $M = 200,000$
- $R = 5,000$
- $W = 2,000$ worker machines

Backup Tasks
Stragglers

- Machine that takes an unusually long time to complete a map or reduce operation
- Can slow down entire computation

How stragglers arise

- Machine with a bad disk
 - Frequent, correctable errors
 - Read performance drops from 30 MB/s to 1 MB/s
- Over scheduling
 - Many tasks executing on the same machine
 - Competition for CPU, memory, disk or network cycles
- Bug in machine initialization code
 - Processor caches may be disabled

Alleviating the problem of stragglers

- When a MapReduce operation is close to completion
- Schedule backup executions of remaining in-progress tasks
- Task completed when
 - Primary or backup finishes execution
- Significantly reduces time to complete large MapReduce operations

Partitioning Function

- Users simply specify R
 - The number of output files
- Default partitioning
 - hash(key) mod R
- Sometimes output keys are URLs
 - Entries from a host must go to same output file
 - hash(Hostname(urlkey)) mod R

Ordering Guarantees

- Intermediate key/pairs are processed in increasing key order
- Easy to generate sorted output file
The Combiner function

- There is significant repetition in intermediate keys produced by each map task
- For word-frequencies
 - Each map may produce 100s or 1000s of <the, "1">
 - All of these counts sent over the network
- Combiner: Does partial merging of this data
 - Before it is sent to reducer

Combiner function

- Executed on each machine that performs map task
- Code implementing combiner & reduce function
 - Usually the same... [We will see an example where this is not true.]
- Difference?
 - COMBINE: Output written to intermediate file
 - REDUCE: Output written to final output file

Input/Output Types: Support for reading input data in different formats

- Text mode treats every line as a <key, value> pair
 - Key: Offset in the file
 - Value: Contents of the line
- <key, value> pairs are sorted by key
- Each input type knows how to split itself for
 - Processing as separate map tasks
 - Text mode splitting occurs only at line boundaries

Side-effects

- Besides intermediate files, other auxiliary files may be produced
 - Side effects
- No atomic commits for multiple auxiliary files that are produced

Skipping Bad Records [1/3]

- Bugs in user code cause Map or Reduce functions to crash
 - Deterministically: On certain records
- Fix the bug?
 - Yes, but not always feasible
- Acceptable to ignore a few records

Skipping Bad Records [2/3]

- Optional mode of operation
 1. Detect records that cause deterministic crashes
 2. Skip them
- Each worker installs a signal handler to catch segmentation violations and bus errors
Skipping Bad Records

- Signal handler sends last gasp UDP packet to the Master
 - Contains sequence number
- When Master sees more than 1 failure at that record
 - Indicates record should be skipped during next execution

Local Execution

- Support for **sequential execution** of MapReduce operation on a single machine
 - Helps with debugging, profiling, and testing
- Controls to limit computation to a particular map
 - Invoke programs with a special flag
 - Use debugging and testing tools

Status Information

- Master runs internal HTTP Server
- Exports pages for viewing
- Show the progress of a computation
 - Number of tasks in progress
 - Number of tasks that completed
 - Bytes of input
 - Bytes of intermediate data
 - Processing rate

The contents of this slide set are based on the following references

- Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150