To Orchestrate a Job in a Cluster

A job comprises many tasks
What could be so hard, you ask?
A job’s done, when every task wraps up
Don’t you insist, with every incipient
Machines may slow down or go bust
For no reason nor rhyme
Try to complete, you must
All tasks, at roughly the same time

Professor: SHRIDEEPPALLICKARA
Computer Science
Colorado State University

February 28, 2019

Frequently asked questions from the previous class survey

- ConcurrentHashMap:
 - Does containsKey() use an iterator or acquire a lock?
 - Can you extend it?

- CountDownLatch
 - What happens if a thread crashes?
 - Why not just use wait()/notify()?
 - How did the threads know to wait to startGate.countdown()?
 - In the case of Collections.synchronizedList(List list) which lock is acquired?

Topics covered in this lecture

- Map Reduce

Programming model

- Computation takes a set of input key/value pairs
- Produces a set of output key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

MAPREDUCE

MATERIALS BASED ON:

JEFFREY DEAN and SANJAY GHEMAWAT. MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150

February 28, 2019

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS

SLIDES CREATED BY: SHRIDEEP PALICKARA
Map
- Takes an input pair
- Produces a set of intermediate key/value pairs

Mappers
- If map operations are independent of each other they can be performed in parallel
 - Shared nothing
- This is usually the case

MapReduce library
- Groups all intermediate values with the same intermediate key
- Passes them to the Reduce function

Reduce function
- Accepts intermediate key I and set of values for that key
- Merge these values together to get smaller set of value

Counting number occurrences of each word in a large collection of documents

```java
map (String key, String value)
//key: document name
//value: document contents
for each word $w$ in value
    EmitIntermediate($w$, "$1")
```

Counting number occurrences of each word in a large collection of documents

```java
reduce (String key, Iterator values)
//key: a word
//value: a list of counts
int result = 0;
for each $v$ in values
    result += ParseInt($v$);
Emit(AsString(result));
```

Sums together all counts emitted for a particular word
MapReduce specification object contains

- Names of
 - Input
 - Output
- Tuning parameters

Map and reduce functions have associated types drawn from different domains

\[
\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2)
\]
\[
\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)
\]

What's passed to-and-from user-defined functions?

- Strings
 - User code converts between
 - String
 - Appropriate types

Examples

Programs expressed as MapReduce computations: Distributed Grep

- Map
 - Emit line if it matches specified pattern
- Reduce
 - Just copy intermediate data to the output
 - The reducer here is an identity function

Counts of URL access frequency

- Map
 - Process logs of web page requests
 - Output \(<URL, 1>\)
- Reduce
 - Add together all values for a particular URL
 - Output \(<URL, \text{total count}>\)
Reverse Web-link Graph

- **Map**
 - Outputs `<target, source>` pair for each target URL found in page source

- **Reduce**
 - Concatenates list of all sources for a target URL
 - Output `<target, list(source)>`

Term-Vector per Host

- **Map**
 - For each input document, the Map
 - `Emits <hostname, term vector>`

- **Reduce**
 - `Has all per-document vectors for a given host`
 - `Add term vectors; discard away infrequent terms `<hostname, term vector>`

Inverted Index

- **Map**
 - Parse each document
 - `Emit <word, document ID>`

- **Reduce**
 - `Accept all pairs for a given word`
 - `Sort document IDs`
 - `Emit <word, list(document ID)> pair`

Implementation

- **Machines are commodity machines**
- **GFS** is used to manage data stored on the disks

Execution Overview – Part I

- **Maps** distributed across multiple machines
- **Automatic partitioning of data into M splits**
- **Splits are processed concurrently on different machines**
Execution Overview – Part II

- Partition intermediate key space into R pieces
- E.g., $\text{hash(key)} \mod R$
- User specified parameters
 - Partitioning function
 - Number of partitions (R)

Execution Overview: Step I
The MapReduce library

- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines

Execution Overview: Step II
Program copies

- One of the copies is a Master
- There are M map tasks and R reduce tasks to assign
- Master
 - Picks idle workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III
Workers that are assigned a map task

- Read contents of their input split
- Parses <key, value> pairs out of the input data
- Pass each pair to user-defined Map function
- Intermediate <key, value> pairs from Maps
 - Buffered in Memory

Execution Overview: Step IV
Writing to disk

- Periodically, buffered pairs are written to disk
- These writes are partitioned
 - By the partitioning function
- Locations of buffered pairs on local disk
 - Reported back to Master
 - Master forwards these locations to reduce workers
Execution Overview: Step V
Reading Intermediate data
- Master notifies Reduce worker about locations
- Reduce worker reads buffered data from the local disks of Maps
- Read all intermediate data; sort by intermediate key
 - All occurrences of the same key are grouped together
 - Many different keys map to the same Reduce task

Execution Overview: Step VI
Processing data at the Reduce worker
- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of intermediate values to Reduce function
- Output of the Reduce function is appended
 - To output file of the reduce partition

Execution Overview: Step VII
Waking up the user
- After all Map & Reduce tasks have been completed
- Control returns to the user code

Master Data Structures
- For each Map and Reduce task
 - State: (idle, in-progress, completed)
 - Worker machine identity
- For each completed Map task store
 - Location and sizes of R intermediate file regions
 - Information pushed incrementally to in-progress Reduce tasks

Worker failures
- Master pings worker periodically
- After a certain number of failed pings
 - Master marks worker as having failed
- Any Map task completed by failed worker?
 - Reset to initial idle state
 - Eligible for rescheduling

Fault Tolerance
Why completed Map tasks are reexecuted

- Output is stored on local disk of failed machine
- Inaccessible
- All reduce workers are notified about reexecution
- Reduce tasks do not need to be reexecuted
- Output stored in GFS

Master Failures

- Could checkpoint at the Master
- Data structures are well-defined
- However, since there is only one Master
- Assumption is that failure is unlikely
- If there is a Master failure?
 - MapReduce computation is aborted
 - Client must check and retry MapReduce operation

Semantics in the presence of failures: If map and reduce operators are deterministic

- Distributed execution output is identical to
- Non-faulting, sequential execution
- Atomic commits of map and reduce task outputs help achieve this

Each in-progress task writes output to private temporary files

- Map task produces R such files
 - When task completes, Map sends this info to the Master
- Reduce task produces one such file
 - When reduce completes, worker atomically:
 - Renames temporary file to final output file
 - Uses GFS to do this

Locality

- Conserve network bandwidth
- Input files managed by GFS
- MapReduce master takes location of input files into account
- Schedule task on machine that contains a replica of the input slice

Locality and its impact when running large MapReduce tasks

- Most input data is read locally
- Consumes no network bandwidth
Task Granularity

- Subdivide map phase into M pieces
- Subdivide reduce phase into R pieces
- $M, R \gg$ number of worker machines
- Each worker performing many different tasks:
 - Improves dynamic load balancing
 - Speeds up recovery during failures

Practical bounds on how large M and R can be

- M is chosen such that:
 - Input data is roughly 16 MB to 64 MB
- R constrained by users:
 - Output of each reduce is in a separate file
 - R is a small multiple of the number of machines that will be used

Typical values used at Google

- $M = 200,000$
- $R = 5,000$
- $W = 2,000$ worker machines

Backup Tasks
Stragglers

- Machine that takes an unusually long time to complete a map or reduce operation
- Can slow down entire computation

How stragglers arise

- Machine with a bad disk
 - Frequent, correctable errors
 - Read performance drops from 30 MB/s to 1 MB/s
- Over scheduling
 - Many tasks executing on the same machine
 - Competition for CPU, memory, disk or network cycles
- Bug in machine initialization code
 - Processor caches may be disabled

Alleviating the problem of stragglers

- When a MapReduce operation is close to completion
- Schedule backup executions of remaining in-progress tasks
- Task completed when
 - Primary or backup finishes execution
- Significantly reduces time to complete large MapReduce operations

Partitioning Function

- Users simply specify R
 - The number of output files
- Default partitioning
 - $\text{hash(key)} \mod R$
- Sometimes output keys are URLs
 - Entries from a host must go to same output file
 - $\text{hash(Hostname(webkey))} \mod R$

Ordering Guarantees

- Intermediate key/pairs are processed in increasing key order
- Easy to generate sorted output file
The Combiner function

- There is significant repetition in intermediate keys produced by each map task.
- For word-frequencies:
 - Each map may produce 100s or 1000s of <the, “1”> pairs.
 - All of these counts sent over the network.
- Combiner: Does partial merging of this data.
 - Before it is sent to reducer.

Combiner function

- Executed on each machine that performs map task.
- Code implementing combiner & reduce function.
 - Usually the same ...
 - (We will see an example where this is not true.)
- Difference:
 - COMBINE: Output written to intermediate file.
 - REDUCE: Output written to final output file.

Input/Output Types: Support for reading input data in different formats

- Text mode treats every line as a <key, value> pair.
 - Key: Offset in the file.
 - Value: Contents of the line.
- <key, value> pairs are sorted by key.
- Each input type knows how to split itself for
 - Processing as separate map tasks.
 - Text mode splitting occurs only at line boundaries.

Side-effects

- Besides intermediate files, other auxiliary files may be produced.
 - Side effects.
- No atomic commits for multiple auxiliary files that are produced.

Skipping Bad Records [1/3]

- Bugs in user code cause Map or Reduce functions to crash:
 - Deterministically: On certain records.
- Fix the bug?
 - Yes, but not always feasible.
- Acceptable to ignore a few records.

Skipping Bad Records [2/3]

- Optional mode of operation:
 1. Detect records that cause deterministic crashes.
 2. Skip them.
- Each worker installs a signal handler to catch segmentation violations and bus errors.
Skipping Bad Records [3/3]

- Signal handler sends last gasp UDP packet to the Master
 - Contains sequence number
- When Master sees more than 1 failure at that record
 - Indicates record should be skipped during next execution

Local Execution

- Support for sequential execution of MapReduce operation on a single machine
 - Helps with debugging, profiling, and testing
- Controls to limit computation to a particular map
- Invoke programs with a special flag
 - Use debugging and testing tools

Status Information

- Master runs internal HTTP Server
- Exports pages for viewing
- Show the progress of a computation
 - Number of tasks in progress
 - Number of tasks that completed
 - Bytes of input
 - Bytes of intermediate data
 - Processing rate

The contents of this slide set are based on the following references

- Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150