Frequently asked questions from the previous class survey

- Do datanodes know about each other?
- When you form a topology, how do they know about each other?
- If you do not receive an acknowledgement from one of the nodes, is it resent to the entire topology?
- Should you check to see if the compressed file is bigger than the original?
- Is it ever more efficient to send to multiple nodes (e.g., 2 or 4) than to only one node?
- HDFS aims for availability and partition-tolerance at the expense of consistency?

March 28, 2019

Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts
 - Resilient Distributed Datasets

March 28, 2019

As distributed data analytics have grown common ...

- Practitioners have sought easier tools for the task
- Apache Spark has emerged as one of the most popular
 - Extending and generalizing MapReduce

March 28, 2019

Spark: What is it?

- Cluster computing platform
 - Designed to be fast and general purpose
- Speed
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing
- Why is speed important?
 - Difference between waiting for hours versus exploring data interactively

March 28, 2019
Spark: Influences and Innovations

- Spark has inherited parts of its API, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ
- Spark’s internals, especially how it handles failures, differ from many traditional systems
- Spark’s ability to leverage lazy evaluation within memory computations makes it particularly unique

Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are generalizable
- On its own, Spark is not a data storage solution
 - Performs computations on Spark JVMs that last only for the duration of a Spark application
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - To house the data processed with Spark
 - A cluster manager — to orchestrate the distribution of Spark applications across the cluster

Key enabling idea in Spark

- Memory resident data
- Spark loads data into the memory of worker nodes
 - Processing is performed on memory-resident data

A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>Time</th>
<th>Scaled time in human terms (2 billion times slower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 ns (2 GHz)</td>
<td>1 second</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 ns (1 GHz)</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>70 ns</td>
<td>1.05 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 ns (5 μs)</td>
<td>1.67 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 ns (7 ms)</td>
<td>142 hours</td>
</tr>
<tr>
<td>Quanta</td>
<td>100,000,000,000 ns (100 ms)</td>
<td>6.3 years</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing
- This has previously required multiple, independent tools

APIs

- Java, Python, Scala, and SQL
- Integrates well with other tools
 - Can run in Hadoop clusters
 - Access Hadoop data sources, including Cassandra
At its core, Spark is a computational engine

- Spark is responsible for several aspects of applications that comprise
 - Many tasks across many machines (compute clusters)
- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring

Benefits of tight integration

- All libraries and higher-level components benefit from improvements at the lower layers
- E.g.: Spark’s core engine adds optimization? SQL and ML libraries automatically speed-up as well

Benefits of tight integration

- Biggest advantage is ability to build applications that seamlessly combine different processing models
- An application may use ML to classify data in real time as it is being ingested
- Analysts can query this resulting data, also in real time, via SQL (e.g.: join data with unstructured log-files)
Spark SQL

- Package for working with structured data
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python

Semi-structured data and Spark SQL

- Spark SQL defines an interface for a semi-structured data type, called **DataFrames**
- **Datasets** and as of Spark 1.6, a semi-structured, typed version of RDDs called Datasets
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL.

Spark Streaming

- Enables processing of live streams of data from sources such as:
 - Logfiles generated by production webservers
 - Messages containing web service status updates
- Uses the scheduling of the Spark Core for streaming analytics on minibatches of data
- Has a number of unique considerations, such as the window sizes used for batches

MLib

- Library that contains common machine learning functionality
- Algorithms include:
 - Classification, regression, clustering, and collaborative filtering
 - Low-level primitives
 - Generic gradient descent optimization algorithm
- Alternatives?
 - Mahout, sci–kit learn, VW, WEKA, and R among others

What about Spark ML?

- Has existed since Spark 1.2
- Spark ML provides a higher-level API than MLLib
 - Goal is to allow users to more easily create practical machine learning pipelines
- Spark MLLib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
- Eventually the Spark community plans to move over to ML and deprecate MLLib

Graph X

- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge
Cluster Managers

- Spark runs over a variety of cluster managers
- These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark

Storage Layers for Spark

- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.

Spark Shells

- Interactive (Python and Scala)
 - Similar to shells like Bash or Windows command prompt
 - Ad hoc data analysis
 - Traditional shells manipulate data using disk and memory on a single machine
 - Spark shells allow interaction with data that is distributed across many machines
 - Spark manages complexity of distributing processing

Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure

Scala

- Has spent most of its life as an academic language
 - Still largely developed at universities
 - Has a rich standard library that has made it appealing to developers of high-performance server applications
- Like Java, Scala is a strongly typed object-oriented language
 - Includes many features from functional programming languages that are not in standard Java
 - Interestingly, Java 8 incorporates several of the more useful features of Scala and other functional languages.
What is functional programming?
- When a method is compiled by Java, it is converted to instructions called byte code and ... Then largely disappears from the Java environment. Except when it is called by other methods.
- In a functional language, functions are treated the same way as data. Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions.

What about Clojure?
- Based on Lisp.
- Javascript.
- Name was a marketing gimmick.
- Closer to Clojure and Scala than it is to Java.

CORE SPARK CONCEPTS

Spark in a nutshell
- Spark allows users to write a program for the driver (or master node) on a cluster computing system that can perform operations on data in parallel.
- Spark represents large datasets as RDDs, which are stored in the executors (or worker nodes).
- The objects that comprise RDDs are called partitions and may be (but do not need to be) computed on different nodes of a distributed system.
- The Spark cluster manager handles starting and distributing the Spark executors across a distributed system.

Drivers
- Every Spark application consists of a driver program.
- Driver launches various parallel operations on the cluster.
- Constituent elements:
 - Application’s main function
 - Defines distributed datasets on the clusters
 - Applies operations to these datasets.
SparkContext

- Driver programs access Spark through a SparkContext object
- Represents a connection to a computing cluster
- Within the shell:
 - Created as the variable sc
 - You can even print out sc to see the type
- Once you have a SparkContext, you can use it to build RDDs
- And then run operations on the data...

Executors

- Driver programs manage a number of nodes, called executors
- Executors are responsible for running operations
- For example:
 - If we were running a count() operation on cluster
 - Different machines might count lines in different ranges of the file

Components for distributed execution in Spark

- Driver Program
 - SparkContext
- Worker Node
 - Task
 - Task

Lot of Spark’s API revolves around passing functions to its operators

```java
def hasPython(line):
    return "Python" in line
pythonLines = lines.filter(hasPython)
```

Also known as the lambda or => syntax

RESILIENT DISTRIBUTED DATASET (RDD)

- JavaRDD<String> pythonLines = lines.filter(
 new Function<String, Boolean>() {
 @Override
 public Boolean call(String line) {
 return line.contains("Python");
 }
 });
  ```
- JavaRDD<String> pythonLines = lines.filter(line => line.contains("Python") );
```
Resilient Distributed Dataset (RDD)

- RDD is an immutable distributed collection of objects
- Each RDD is split into multiple partitions
 - Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes

Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```

Once created, RDDs offer two types of operations

- **Transformations**
 - Construct a new RDD from a previous one
 - E.g.: Filtering data that matches a predicate
- **Actions**
 - Compute a result based on an RDD
 - Return result to the driver program or save it in external storage system (HDFS)

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to compute just the data needed for the result
- Example:
  ```
  lines = sc.textFile("README.md")
  pythonLines = lines.filter(lambda line: "Python" in line)
  ```
 - If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a lazy fashion
 - When?
 - The first time they are used in an action
 - Loading lazily allows transformations to be performed before the action

RDD and actions

- RDDs are recomputed (by default) every time you run an action on them
- If you wanted to reuse an RDD?
 - Ask Spark to persist it using `RDD.persist()`
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines)
 - Persisted RDD is used in future actions
Every Spark program and shell works as follows:

1. Create some input RDD from external data
2. Transform them to define new RDDs using transformations like `filter()`
3. Ask Spark to `persist()` any intermediate RDDs that needs to be reused
4. Launch actions such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark

The contents of this slide-set are based on the following references:

- Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data. Byron Ellis. Wiley. (Chapter 2)