CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [SPARK]

Frequently asked questions from the previous class survey
- If RDDs are recomputed after every action, what's the point of having them immutable?
- Lazy evaluation: Why is this important?

Topics covered in this lecture
- Resilient Distributed Datasets
- Common Transformations and Actions

RESILIENT DISTRIBUTED DATASET [RDD]

Lazy loading allows Spark to see the whole chain of transformations
- Allows it to compute just the data needed for the result
 - Example:
 - lines = sc.textFile("README.md")
 - pythonLines= lines.filter(lambda line: "Python" in line)
 - If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

RDD and actions
- RDDs are recomputed (by default) every time you run an action on them
 - If you wanted to recompute an RDD?
 - Ask Spark to persist it using `st.persist()`
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines)
 - Persisted RDD is used in future actions
RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in repeated computations.
- RDDs are immutable, so transforming an RDD returns a new RDD rather than the existing one.
- Cross-cutting implications:
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient.

Every Spark program and shell works as follows

1. Create some input RDD from external data
2. Transform them to define new RDDs using transformations like `filter()`
3. Ask Spark to `persist()` any intermediate RDDs that needs to be reused
4. Launch actions such as `count()`, etc. to kickoff a parallel computation

Spark is optimized and executed by Spark

A CLOSER LOOK AT RDD OPERATIONS

RDDs support two types of operations

- Transformations
 - Operations that return a new RDD. E.g. `filter()`
- Actions
 - Operations that return a result to the driver program or write to storage
 - Kicks of a computation. E.g. `count()`
- Distinguishing aspect?
 - Transformations return RDDs
 - Actions return some other data type

In our previous example ...

- `filter` does not mutate `inputRDD`
 - Returns a pointer to an entirely new RDD
 - `inputRDD` can still be reused later in the program
- We could use `inputRDD` to search for lines with the word “warning”
 - While we are at it, we will use another transformation, `union()`, to print number of lines that contained either `error` or `warning`

```
inputRDD = sc.textFile("log.txt")
errorsRDD = inputRDD.filter(lambda x: "error" in x)
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
badlinesRDD = errorsRDD.union(warningsRDD)
```

In our previous example

- Note how `union()` is different from `filter()`
 - Operates on 2 RDDs instead of one
- Transformations can actually operate on any number of RDDs

RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
 - Lineage graph
- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example

Actions

- We can create RDDs from each other using transformations
- At some point, we need to actually do something with the dataset
 - Actions
- Forces evaluations of the transformations required for the RDD they were called on

Let's try to print information about `badlinesRDD`

```scala
print "Input had " + badLinesRDD.count() + " concerning lines"
print "Here are 10 examples:";
for line in badLinesRDD.take(10):
  print line
```

RDDs also have a collect to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use `collect()` on it
- Should NOT be used on large datasets
- In most cases, RDDs cannot be `collect()`ed to the driver
 - Common to write data out to a distributed storage system ... HDFS or S3
Lazy Evaluation

- Transformations on RDDs are lazily evaluated
- Spark will not begin to execute until it sees an action
- Uses this to reduce the number of passes it has to take over data by grouping operations together
- What does this mean?
 - When you call a transformation on an RDD (for e.g. `map`) the operation is not immediately performed
 - Spark internally records metadata that operation is requested

How you should think of RDDs

- Rather than thinking of it as containing specific data
- Best to think of it as containing instructions on how to compute the data that we build through transformations
- Loading data into a RDD is lazily evaluated just as transformations are

COMMON TRANSFORMATIONS AND ACTIONS

Element-wise transformations: `filter()`

- Takes in a function and returns an RDD that only has elements that pass the `filter()` function

Things that can be done with `map()`

- Fetch website associated with each URL in collection to just squaring numbers
- `map()`’s return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use `flatMap`

```scala
import sysencing.paralllelism("hello world", "hi")
words=lines.flatMap(lambda line: line.split (" "))
words.first() # returns hello
```
Difference between map and flatMap

<table>
<thead>
<tr>
<th>RDD1</th>
<th>mappedRDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>{"coffee", "panda"}, {"happy", "panda"}, {"happiest", "panda", "party"}</td>
<td>{"coffee", "panda"}, {"happy", "panda"}, {"happiest", "panda", "party"}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RDD1</th>
<th>flatMappedRDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>{"coffee", "panda"}, {"happy", "panda"}, {"happiest", "panda", "party"}</td>
<td>{"coffee", "panda", "happy", "panda", "happiest", "panda", "party"}</td>
</tr>
</tbody>
</table>

Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

Some simple set operations

<table>
<thead>
<tr>
<th>RDD1</th>
<th>RDD2</th>
<th>RDD1.distinct()</th>
<th>RDD1.union(RDD2)</th>
<th>RDD1.intersection(RDD2)</th>
<th>RDD1.subtract(RDD2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{coffee, coffee, panda, tiger, tea}</td>
<td>{coffee, tiger, snake}</td>
<td>{coffee, tiger, panda, tea}</td>
<td>{coffee, coffee, coffee, panda, tiger, tiger, tea, snake}</td>
<td>{coffee, tiger}</td>
<td>{panda, tea}</td>
</tr>
</tbody>
</table>

Cartesian product between two RDDs

<table>
<thead>
<tr>
<th>RDD1</th>
<th>RDD2</th>
<th>RDD1.cartesian(RDD2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{User1, User2, User3}</td>
<td>{Venue("Betabrand"), Venue("Asha Tree House"), Venue("Ritual")}</td>
<td>{(User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")), (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")), (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual"))}</td>
</tr>
</tbody>
</table>

Actions on Basic RDDs

- reduce():
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? + sums the RDD
 - sum = rdd.reduce((x,y) => x + y)

- fold(): takes a function with the same signature as reduce(), but also takes a "zero value" for initial call
 - "Zero value" is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

COMMON ACTIONS

April 2, 2019

CS455: Introduction to Distributed Systems [Spring 2019]
Dept. Of Computer Science, Colorado State University
Both `fold()` and `reduce()` require return type of same type as the RDD elements

- The `aggregate()` removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements

Examples: Basic Actions on RDDs

Examples: Basic actions on RDDs [1/7]

- Our RDD contains `{1, 2, 3, 3}`
- `collect()`
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: `{1, 2, 3, 3}`

Examples: Basic actions on RDDs [2/7]

- Our RDD contains `{1, 2, 3, 3}`
- `count()`
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: `4`

Examples: Basic actions on RDDs [3/7]

- Our RDD contains `{1, 2, 3, 3}`
- `countByValue()`
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: `{(1,1), (2,1), (3,2)}`

Examples: Basic actions on RDDs [4/7]

- Our RDD contains `{1, 2, 3, 3}`
- `take(num)`
 - Return `num` elements from the RDD
 - Invocation: `rdd.take(2)`
 - Result: `{1, 2}`
Examples: Basic actions on RDDs

1. **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: rdd.reduce((x,y) => x + y)
 - Result: 9

2. **aggregate(zeroValue)(seqOp, combOp)**
 - Similar to reduce() but used to return a different type
 - Invocation:
     ```scala
     rdd.aggregate ( (0,0))
     ((x,y) => (x._1 + y, x._2 + 1),
     (x,y) => (x._1 + y._1, x._2 + y._2))
     ```
 - Result: (9, 4)

Examples: Basic actions on RDDs

3. **foreach(func)**
 - Apply the provided function to each element of the RDD
 - Invocation: rdd.foreach(func)
 - Result: Nothing

PERSISTENCE (CACHING)

- Why persistence?
 - Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
 - Naively, Spark will recompute RDD and all of its dependencies each time we call an action on the RDD
 - Super expensive for iterative algorithms
 - To avoid recomputing RDD multiple times?
 - Ask Spark to persist the data
 - The nodes that compute the RDD store the partitions
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`

- Coping with failures
 - If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed
 - Also, replicate data on multiple nodes
 - To handle node failures without slowdowns
Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

What if you attempt to cache too much data that does not fit in memory?

- Spark will evict old partitions using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk

- RDDs also come with a method, unpersist()
 - Manually remove data elements from the cache

Working with Key/Value Pairs

RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats

- Advanced feature to control layout of pair RDDs across nodes
 - Partitioning

RDDs containing key/value pairs

- Are called pair RDDs
- Useful building block in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - reduceByKey() to aggregate data separately for each key
 - join() to merge two RDDs together by grouping elements of the same key
Pair RDDs

- RDDs that contain key/value pairs
- Expose partitions that allow you to act on each key in parallel or regroup data across the network

Creating Pair RDDs

- `pairs=lines.map(lambda x: (x.split(" ")[0], x))`
- Creates a pair RDD using the first word as the key
- Java does not have a built-in tuple type
- `scala.Tuple2` class
 - `new Tuple2(elem1, elem2)`

The contents of this slide-set are based on the following references