CS 455: Introduction to Distributed Systems [SPARK]

Instructor: Shrideep Pallickara
Computer Science
Colorado State University

March 27, 2018

Topics covered in this lecture
- Resilient Distributed Datasets
- Common Transformations and Actions

Lazy loading allows Spark to see the whole chain of transformations
- Allows it to compute just the data needed for the result
 - Example:
    ```scala
    lines = sc.textFile("README.md")
    pythonLines = lines.filter(lambda line: "Python" in line)
    ```
- If Spark were to load and store all lines in the file, as soon as we wrote `lines = sc.textFile("README.md")`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

Frequently asked questions from the previous class survey
- 48-bit bookending in Bzip2: does the number have to be “special”?
- Spark seems to have “too many” features/extension libraries?
 - Good or bad
 - Code inspection?

RESILIENT DISTRIBUTED DATASET [RDD]

RDD and actions
- RDDs are recomputed (by default) every time you run an action on them
- If you wanted to reuse an RDD?
 - Ask Spark to persist it using `rdapersist()`
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines)
 - Persisted RDD is used in future actions
RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in repeated computations
- RDDs are immutable, so transforming an RDD returns a new RDD rather than the existing one
- Cross-cutting implications?
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient

Every Spark program and shell works as follows

1. Create some input RDD from external data
2. Transform them to define new RDDs using transformations like `filter()`
3. Ask Spark to `persist()` any intermediate RDDs that needs to be reused
4. Launch actions such as `count()`, etc. to kickoff a parallel computation

Computing is optimized and executed by Spark

A CLOSER LOOK AT RDD OPERATIONS

RDDs support two types of operations

- Transformations
 - Operations that return a new RDD. E.g.: `filter()`
- Actions
 - Operations that return a result to the driver program or write to storage
 - Kicks of a computation. E.g.: `count()`

Distinguishing aspect?
- Transformations return RDDs
- Actions return some other data type

Transformations

- Many transformations are *element-wise*
 - Work on only one element at a time
- Some transformations are not element-wise
 - E.g.: We have a logfile, `log.txt`, with several messages, but we only want to select error messages:

    ```scala
dataRDD = sc.textFile("log.txt")
errorsRDD = dataRDD.filter(lambda x: "error" in x)
```
In our previous example

- Note how union() is different from filter()
 - Operates on 2 RDDs instead of one
 - Transformations can actually operate on any number of RDDs

RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
 - Lineage graph
 - Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example

Let's try to print information about badlinesRDD

```python
print "Input had " + badLinesRDD.count() + " concerning lines"
print "here are 10 examples:"
for line in badLinesRDD.take(10):
    print line
```

Actions

- We can create RDDs from each other using transformations
 - At some point, we need to actually do something with the dataset
 - Actions
 - For ake evaluations of the transformations required for the RDD they were called on

RDDs also have a collect to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use collect() on it
 - Should NOT be used on large datasets
 - In most cases, RDDs cannot be collect()ed to the driver
 - Common to write data out to a distributed storage system ... HDFS or S3
Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will not begin to execute until it sees an action
- Uses this to **reduce the number of passes** it has to take over data by grouping operations together
 - What does this mean?
 - When you call a transformation on an RDD (for e.g. `map`) the operation is not immediately performed
 - Spark internally records metadata that operation is requested

How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as **containing instructions on how to compute the data** that we build through transformations
- Loading data into a RDD is lazily evaluated just as transformations are

Element-wise transformations: `filter()`

- Takes in a function and returns an RDD that only has elements that pass the `filter()` function

COMMON TRANSFORMATIONS AND ACTIONS

之事呢

Element-wise transformations: `map()`

- Takes in a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD

Things that can be done with `map()`

- Fetch website associated with each URL in collection to just squaring numbers
- `map()`’s return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use `flatMap()`

```python
lines=sc.parallelize(["hello world", "hi"])
words=lines.flatMap(lambda line: line.split(" "))
words.first()   # returns hello
```
Difference between map and flatMap

- RDD1: map
 - ["coffee", "panda", "happy", "panda"], ["happiest", "panda", "party"]
- mappedRDD
- RDD1: flatMap
 - ["coffee", "panda", "happy", "panda", "happiest", "panda", "party"]
- flatMappedRDD

Pseudo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

Some simple set operations

- RDD1 = [coffee, coffee, panda, tiger, tea]
- RDD2 = [coffee, tiger, snake]
- RDD1.distinct() = [coffee, tiger, panda, tea]
- RDD1.union(RDD2) = [coffee, coffee, coffee, panda, tiger, tiger, tea, snake]
- RDD1.intersection(RDD2) = [coffee, tiger]
- RDD1.subtract(RDD2) = [panda, tea]

Cartesian product between two RDDs

- RDD1 cartesian RDD2
 - [(User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")), (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")), (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual"))]

Common Actions

- reduce()
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? sum the RDD
 - sum = rdd.reduce((x, y) => x + y)

- fold() takes a function with the same signature as reduce(), but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation
Both `fold()` and `reduce()` require return type of same type as the RDD elements

- The `aggregate()` removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements

Examples: Basic Actions on RDDs

1/7

- Our RDD contains `{1, 2, 3, 3}`

 - `collect()`
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: `{1, 2, 3, 3}`

2/7

- Our RDD contains `{1, 2, 3, 3}`

 - `count()`
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

3/7

- Our RDD contains `{1, 2, 3, 3}`

 - `countByValue()`
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: `{(1,1), (2,1), (3,2)}`

4/7

- Our RDD contains `{1, 2, 3, 3}`

 - `take(num)`
 - Return `num` elements from the RDD
 - Invocation: `rdd.take(2)`
 - Result: `{1, 2}`
Examples: Basic actions on RDDs

- **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x,y) => x + y)`
 - Result: 9

- **aggregate(zeroValue)(seqOp, combOp)**
 - Similar to `reduce()` but used to return a different type
 - Invocation:
    ```scala
    rdd.aggregate((0,0))
    ((x,y) => (x._1 + y, x._2 + 1)),
    (x,y) => (x._1 + y._1, x._2 + y._2))
    ```
 - Result: (9, 4)

- **foreach(func)**
 - Apply the provided function to each element of the RDD
 - Invocation: `rdd.foreach(func)`
 - Result: Nothing

Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
 - Naively, Spark will recompute RDD and all of its dependencies each time we call an action on the RDD
 - Super expensive for iterative algorithms
 - To avoid recomputing RDD multiple times?
 - Ask Spark to persist the data
 - The nodes that compute the RDD, store the partitions
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`

Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed
 - Also, replicate data on multiple nodes
 - To handle node failures without slowdowns
Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Same</td>
<td>Same</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Same</td>
<td>Same</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in-memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

- Spark will **evict old partitions** using a Least Recently Used Cache policy.
- For memory only storage partitions, it will be recomputed the next time they are accessed.
- For memory_and_disk ones? Write them out to disk.

What if you attempt to cache too much data that does not fit in memory?
- RDDs also come with a method, unpersist():
 - Manually remove data elements from the cache.

Working with Key/Value Pairs

- RDDs containing key/value pairs are called **pair RDDs**.
- Useful building block in many programs.
 - Expose operations that allow actions on each key in parallel or regroup data across network.
 - `reduceByKey()` to aggregate data separately for each key.
 - `join()` to merge two RDDs together by grouping elements of the same key.

RDDs of Key/Value Pairs

- Key/value RDDs are commonly used to perform aggregations.
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats.
- Advanced feature to control layout of pair RDDs across nodes:
 - **Partitioning**
Pair RDDs

- RDDs that contain key/value pairs
- Expose partitions that allow you to act on each key in parallel or regroup data across the network

Creating Pair RDDs

- `pairs = lines.map(lambda x: (x.split(" ")[0], x))`
 - Creates a pairRDD using the first word as the key
- Java does not have a built-in tuple type
 - `scala.Tuple2`
 - `new Tuple2(elem1, elem2)`

The contents of this slide-set are based on the following references