Frequently asked questions from the previous class survey

- Can Spark repartition a wide transformation into a narrow transformation?
- Why have a temperature range till 130°F?
- How do you know how much data movement is too much?
- Reduce operation in Spark: how are values added up?
- Does it make sense to write your own partitioner?
- Are there Spark programs that will take a long time (months/years) to complete?

Topics covered in this lecture

- Spark Streaming
 - Architecture and Abstractions
 - Execution
 - Stateful and stateless transformations
 - Windowed operations
 - Performance considerations
 - Example

Example

To start receiving the data?
- Explicitly call start() on StreamingContext
- SparkStreaming will start to schedule Spark jobs on the underlying SparkContext

Previous snippet only sets up the computation

- To start receiving the data?
 - Explicitly call start() on StreamingContext
 - SparkStreaming will start to schedule Spark jobs on the underlying SparkContext
 - Occurs in a separate thread
 - To keep application from terminating?
 - Also call awaitTermination()
 - jssc.start();
 - jssc.awaitTermination();
Spark Streaming Architecture

- Spark Streaming uses a **micro-batch** architecture
 - Streaming computation is treated as continuous series of batch computations on small batches of data
 - Receives data from various input sources and groups into small batches
 - New batches are created at regular intervals
 - At the start of each time interval, a new batch is created
 - Any data arriving in that interval is added to the batch
 - Size of batch is controlled by the batch interval

High-level architecture of Spark Streaming

- **Spark Streaming**
- **Receivers**
- **Batches of input data**
- **Spark**
- Results pushed to external systems

DStream is a sequence of RDDs, where each RDD has one slice of data in stream

- DStreams support output operations, such as the `print()` used in our example.
 - Output operations are similar to RDD actions in that they write data to an external system
 - But in Spark Streaming they run periodically on each time step, producing output in batches
Spark Streaming: Execution

- For each input source, Spark Streaming launches receivers
 - Tasks running within the application’s executors that collect data from source and save as RDDs
 - Receives input data and replicates it (by default) to another executor for fault tolerance
 - Data is stored in memory of the executors in the same way that RDDs are cached

Spark Streaming: Execution

- StreamingContext in the driver program then periodically runs Spark jobs to:
 - Process this data and ...
 - Combine it with RDDs from previous time steps

Spark Streaming: Fault Tolerance

- Spark Streaming offers the same fault-tolerance properties for DStreams as Spark has for RDDs
 - As long as a copy of the input data is still available, it can recompute any state derived from it using the lineage of the RDDs
 - By rerunning the operations used to process it

Spark Streaming: Fault Tolerance

- By default, data is replicated across two nodes
 - Can tolerate single worker failures
- Using lineage graphs to recompute any derived state? Impractical
 - Spark Streaming relies on checkpointing
 - Saves state periodically
 - Checkpoint every 5-10 batches of data
 - When recovering, only go back to the last checkpoint

Spark Streaming: Transformations

- Stateless transformations
 - Each batch does not depend on data of its previous batches
- Stateful transformations
 - Use data or intermediate results from previous batches to compute results of the current batch
Stateless transformations

- Stateless transformations are simple RDD transformations being applied on every batch — that is, every RDD in a DStream

- Many of the RDD transformations that we have looked at are also available on DStreams

Examples of stateless transformations

- **map()**
 - Apply a function to each element in the DStream and return a DStream of the result
 - `ds.map (x => x + 1)`

Examples of stateless transformations

- **flatMap()**
 - Apply a function to each element in the DStream and return a DStream of the contents of the iterators returned
 - `ds.flatMap (x => x.split(" "))`

Examples of stateless transformations

- **filter()**
 - Return a DStream consisting of only elements that pass the condition passed to filter
 - `ds.filter (x => x != 1)`

Examples of stateless transformations

- **repartition()**
 - Change the number of partitions of the DStream
 - Distributes the received batches across the specified number of machines in the cluster before processing
 - The physical manifestation of the DStream is different in this case
 - `ds.repartition(10)`
Examples of stateless transformations

- `reduceByKey()`
- Combine values with the same key in each batch
 - `ds.reduceByKey((x, y) -> x + y)`

A note about stateless operations

- Although it may seem that they are being applied over the whole stream ...
 - Each DStream has multiple RDDs (batches)
 - Stateless transformation applies separately to each RDD
 - E.g. `reduceByKey()` will reduce data for each timestep, but not across timesteps

Stateful transformations

- Operations on DStreams that track data across time
 - Data from previous batches used to generate results for a new batch
- Two types of windowed operations
 - Act over sliding window of time periods
 - `updateStateByKey()` track state across events for each key

Stateful transformations and fault tolerance

- Requires checkpointing to be enabled in `StreamingContext` for fault tolerance
 - `ssc.checkpoint("hdfs:// ...");`
Windowed Transformations

- Compute results across a longer time period than the batch interval.
- Two parameters: window and sliding durations.
 - Both must be a multiple of the batch interval.
- Window duration controls how many previous batches of data are considered.
 - Window Duration/batchInterval
- If the batch interval is 10 seconds and the sliding window is 30 seconds, the last 3 batches.

A windowed stream:
Window duration (3) & slide duration (2)

Every 2 time steps, we compute a result over the previous 3 time steps.

Simplest window operation on a DStream

- window()
- Returns new DStream with data from the requested window.
- Each RDD in the DStream resulting from window(), will contain data from multiple batches.

Other operations on top of window()

- reduceByWindow and reduceByKeyAndWindow
- Includes a special form that allows reduction to be performed incrementally.
 - Considering only the data coming into the window and the data that is going out.
 - Special form requires an inverse of the reduce function.
 - Such as – for +.
 - More efficient for large windows if your function has an inverse.

Difference between naïve and incremental reduceByWindow()

Maintaining state across batches

- updateStateByKey()
 - Provides access to a state variable for DStreams of key/value pairs.
 - Given a DStream of (key, event) pairs.
 - Construct a new DStream of (key, state) pairs by taking a function that specifies how to update the state for each key, given new events.
PERFORMANCE CONSIDERATIONS IN SPARK STREAMING

April 3, 2018

Performance considerations

- **Batch size**
 - 500 milliseconds is considered a good minimum size
 - Start with a large batch size (~10 seconds) and work down to a smaller batch size
 - If processing times remain consistent, explore decreasing the batch size
 - If the processing times increase, you have reached the limit

- **Window size**
 - Has a great impact on performance
 - Consider increasing this for expensive operations

Garbage collections and memory usage

- Cache RDDs in serialized form
 - Using Kryo for serialization reduces this even more
 - Reduces space for in-memory representations
- By default, Spark uses an in-memory cache
 - Can also evict RDDs older than a certain time-period
 - spark.cleaner.ttl
 - This preemptive eviction of RDDs also reduces the garbage collection pressure

Levels of parallelism in data receiving

- Each input DStream creates a single receiver that receives a single stream of data
- Receiving multiple data streams possible by creating multiple input DStreams
 - Each DStream must be configured to receive different partitions of the data stream from the source(s)
- For a Kafka DStream receiving data on two topics?
 - Split into two DStreams each receiving one topic
 - Two receivers would run and receive data in parallel

Another approach is to tune the receiver’s **block interval**

- Determined by spark.streaming.blockInterval
- For most receivers, received data is **coalesced** into blocks of data before storing in memory
- The number of blocks in each batch determines the number of tasks used to process the received data in a map-like transformation
- Number of blocks per batch?
 - Batch interval/block interval

Levels of parallelism in data receiving

- Number of tasks per batch?
 - Batch interval/block interval
 - Block interval of 200 ms will create 10 tasks per 2 seconds batches
 - If the number of tasks is too low?
 - All available cores might not be available to use all the data
 - To increase number of tasks for a given batch interval?
 - Reduce the block interval
Levels of parallelism in data receiving

- What if you did not want to receive data with multiple input streams?
 - Explicitly repartition the input data stream
- Repartitioning is done using the `inputStream.repartition(<number of partitions>)`
 - Distributes the received batches of data across the specified number of machines in the cluster before further processing.

Data serialization

- Data received through receivers is stored with `StorageLevel.MEMORY_AND_DISK_SER_2`
 - Data that does not fit in memory spills over to disk
- Input data and persisted RDDs generated by DStream transformations are automatically cleared
- If you are using a window operation of 10 minutes, then Spark Streaming will keep around the last 10 minutes of data, and actively throw away older data
- Data can be retained for a longer duration by setting `streamingContext.remember`.

Processing Twitter Streams using Spark

Spark-streaming example

- Step 1: Create a SparkStreaming context and Twitter credential setup
  ```java
  SparkConf sparkConf = new SparkConf().setAppName("Spark-streaming-twitter-trends");
  //JavaStreamingContext
  JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(1000));
  //Discretized stream of tweets
  JavaDStream<Status> twitterStream = (JavaDStream<Status>) TwitterUtils.createStream(jssc);
  ```

- Step 2: Map Input DStream of Status to String
  ```java
  //Discretized stream of Strings
  JavaDStream<String> statuses = twitterStream.map(  
      new Function<Status, String>() {  
          public String call(Status status) {  
              return status.getText();  
          }  
      }  
  );
  statuses.print();
  jssc.start();
  jssc.awaitTermination();
  ```
Spark-streaming example [3/5]

- Step 3: Stream of hashtags from stream of tweets

```java
// Tokenize words from status
JavaDStream<String> wordsFromStatuses = statuses.flatMap(
    new FlatMapFunction<String, String>() {
        public Iterable<String> call(String input) {
            return Arrays.asList(input.split(" "));
    }
    )

// Extract hashtags
JavaDStream<String> hashTags = wordsFromStatuses.filter(
    new Function<String, Boolean>() {
        public Boolean call(String word) {
            return word.startsWith("#"啸)
    }
    )
```

Spark-streaming example [4/5]

- Step 4: Count the hashtag over 5 min window

```java
// Mapping to tuple of (hashtag,1) in order to count
JavaPairDStream<String, Integer> hashtagtuples = hashTags.mapToPair(
    new PairFunction<String, String, Integer>() {
        public Tuple2<String, Integer> call(String input) {
            return new Tuple2<String, Integer>(input, 1);
    }
    })

// Aggregating over window of 5 min and slide of 1
JavaPairDStream<String, Integer> counts = hashtagtuples.reduceByKeyAndWindow(
    new Function2<Integer, Integer, Integer>() {
        public Integer call(Integer int1, Integer int2) {
            return int1 + int2;
    }
    },
    new Function2<Integer, Integer, Integer>() {
        public Integer call(Integer int1, Integer int2) {
            return int1 - int2;
    }
    },
    new Duration(60 * 5 * 1000),
    new Duration(1 * 1000))
```

Spark-streaming example [5/5]

- Step 5: Find top 10 hashtags according to counts

```java
// Sort and take top 10 hashtags
JavaPairDStream <Integer, String> sortedCount = swapCounts.transformToPair(
    new Function<JavaPairRDD<Integer, String>, JavaPairRDD<Integer, String>>(){
        public JavaPairRDD<Integer, String> call(JavaPairRDD<Integer, String> input)
            throws Exception {
            return input.sortByKey(false);}
    });

sortedCount.foreach(
    new Function<JavaPairRDD<Integer, String>, Void>() {
        public Void call(JavaPairRDD<Integer, String> rdd) {
            String out = "Trending hashtags: 
            for (Tuple2<Integer, String> t: rdd.take(10)) {
                out = out + t.toString() + "\n";
            }
            System.out.println(out);
            return null;}
    });
```

The contents of this slide-set are based on the following references: