Drinking from a fire hose
A packet in isolation seems fine
Why then, do streams, strain systems design?
If processing lags the rate of arrival?
Impend, you will, your process’ survival

Shrideep Pallicker
Computer Science
Colorado State University

Topics covered in this lecture

- Spark Streaming
 - Architecture and Abstractions
 - Execution
 - Stateful and stateless transformations
 - Windowed operations
 - Performance considerations
 - Example

Example

```java
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
JavaDStream<String> lines = jssc.socketTextStream("localhost", 7777);
JavaDStream<String> errorLines = lines.filter(new Function<String, Boolean>() {
    public Boolean call(String line) {
        return line.contains("error");
    }
});
```

Previous snippet only sets up the computation

- To start receiving the data?
 - Explicitly call `start()` on `StreamContext`
- SparkStreaming will start to schedule Spark jobs on the underlying SparkContext
 - Occurs in a separate thread
 - To keep application from terminating?
 - Also call `awaitTermination()`
 - jssc.start();
 - jssc.awaitTermination();
Spark Streaming Architecture

- Spark Streaming uses a micro-batch architecture
 - Streaming computation is treated as continuous series of batch computations on small batches of data
 - Receives data from various input sources and groups into small batches
 - New batches are created at regular intervals
 - At the start of each time interval, a new batch is created
 - Any data arriving in that interval is added to the batch
 - Size of batch is controlled by the batch interval

High-level architecture of Spark Streaming

- Input Data Streams
- Spark Streaming
- Batches of input data
- Spark
- Results pushed to external systems

DStream is a sequence of RDDs, where each RDD has one slice of data in stream

DStreams and the transformations in our example

- Server running at localhost:7777
- Data from time 0 to 1
- Data from time 1 to 2
- Data from time 2 to 3
- Data from time 3 to 4
- error lines from time 0 to 1
- error lines from time 1 to 2
- error lines from time 2 to 3
- error lines from time 3 to 4

DStreams support output operations, such as the `print()` used in our example.

- Output operations are similar to RDD actions in that they write data to an external system
- But in Spark Streaming they run periodically on each time step, producing output in batches
For each input source, Spark Streaming launches receivers:
- Tasks running within the application's executors that collect data from source and store as RDDs
- Receives input data and replicates it (by default) to another executor for fault tolerance
- Data is stored in memory of the executors in the same way that RDDs are cached

Spark Streaming offers the same fault-tolerance properties for DStreams as Spark has for RDDs:
- As long as a copy of the input data is still available, it can recompute any state derived from it using the lineage of the RDDs
- By rerunning the operations used to process it

By default, data is replicated across two nodes:
- Can tolerate single worker failures
- Using lineage graphs to recompute any derived state? Impractical
- Spark Streaming relies on checkpointing:
 - Saves state periodically
 - Checkpoint every 5-10 batches of data
 - When recovering, only go back to the last checkpoint

Stateless transformations:
- Each batch does not depend on data of its previous batches

Stateful transformations:
- Use data or intermediate results from previous batches to compute results of the current batch
Stateless transformations are simple RDD transformations being applied on every batch — that is, every RDD in a DStream.

Many of the RDD transformations that we have looked at are also available on DStreams.

Examples of stateless transformations [1/6]

- **map()**
 - Apply a function to each element in the DStream and return a DStream of the result
 - `ds.map(x => x + 1)`

Examples of stateless transformations [2/6]

- **flatMap()**
 - Apply a function to each element in the DStream and return a DStream of the contents of the iterators returned
 - `ds.flatMap(x => x.split(" "))`

Examples of stateless transformations [3/6]

- **filter()**
 - Return a DStream consisting of only elements that pass the condition passed to filter
 - `ds.filter(x => x != 1)`

Examples of stateless transformations [4/6]

- **repartition()**
 - Change the number of partitions of the DStream
 - Distributes the received batches across the specified number of machines in the cluster before processing
 - The physical manifestation of the DStream is different in this case
 - `ds.repartition(10)`

Examples of stateless transformations [5/6]

- **reduce()**
 - Accumulate the values in the DStream using the specified function
 - `ds.reduce(x => x + y)`

Examples of stateless transformations [6/6]

- **reduceByKey()**
 - Accumulate the values in the DStream using the specified function and key
 - `ds.reduceByKey(x => x + y)`

- **reduceByKeyAndWindow()**
 - Accumulate the values in the DStream using the specified function and key
 - `ds.reduceByKeyAndWindow(x => x + y)`
Examples of stateless transformations

- `reduceByKey()`
- Combine values with the same key in each batch
- `ds.reduceByKey((x, y) -> x + y)`

Examples of stateless transformations

- `groupByKey()`
- Group values with the same key in each batch
- `ds.groupByKey()`

A note about stateless operations

- Although it may seem that they are being applied over the whole stream,...
- Each DStream has multiple RDDs (batches)
- Stateless transformation applies separately to each RDD
- E.g. `reduceByKey()` will reduce data for each timestep, but not across timesteps

Stateful transformations

- Operations on DStreams that track data across time
 - Data from previous batches used to generate results for a new batch
- Two types of windowed operations
 - Act over sliding window of time periods
 - `updateStateByKey()` track state across events for each key

Stateful transformations and fault tolerance

- Requires checkpointing to be enabled in `StreamingContext` for fault tolerance
 - `ssc.checkpoint("hdfs://...");`
Windowed Transformations

- Compute results across a longer time period than the batch interval
- Two parameters: window and sliding durations
 - Both must be a multiple of the batch interval
- Window duration controls how many previous batches of data are considered
 - If the batch interval is 10 seconds and the sliding window is 30 seconds, the last 3 batches are considered.
- Both must be a multiple of the batch interval.

A windowed stream: Window duration (3) & slide duration (2)

Every 2 time steps, we compute a result over the previous 3 time steps.

Simplest window operation on a DStream

- `window()`
- Returns new DStream with data from the requested window
- Each RDD in the DStream resulting from `window()`, will contain data from multiple batches.

Other operations on top of `window()`

- `reduceByWindow` and `reduceByKeyAndWindow`
 - Includes a special form that allows reduction to be performed incrementally
 - Considering only the data coming into the window and the data that is going out.
 - Special form requires an inverse of the reduce function
 - Such as for +
 - More efficient for large windows if your function has an inverse.

Difference between naïve and incremental `reduceByWindow()`

Maintaining state across batches

- `updateStateByKey()`
 - Provides access to a state variable for DStreams of key/value pairs
 - Given a DStream of (key, value) pairs
 - Construct a new DStream of (key, state) pairs by taking a function that specifies how to update the state for each key, given new events.
Performance considerations

- **Batch size**
 - 500 milliseconds is considered a good minimum size
 - Start with a large batch size (~10 seconds) and work down to a smaller batch size
 - If processing times remain consistent, explore decreasing the batch size
 - If the processing times increase? You have reached the limit

- **Window size**
 - Has a great impact on performance
 - Consider increasing this for expensive operations

Garbage collections and memory usage

- Cache RDDs in serialized form
 - Using Kryo for serialization reduces this even more
 - Reduces space for in-memory representations
- By default, Spark uses an in-memory cache
 - Can also evict RDDs older than a certain time-period
 - This preemptive eviction of RDDs also reduces the garbage collection pressure

Levels of parallelism in data receiving [1/4]

- Each input DStream creates a single receiver that receives a single stream of data
- Receiving multiple data streams possible by creating multiple input DStreams
 - Each DStream must be configured to receive different partitions of the data stream from the source(s)
- For a Kafka DStream receiving data on two topics:
 - Split into two DStreams each receiving one topic
 - Two receivers would run and receive data in parallel

Levels of parallelism in data receiving [2/4]

- Another approach is to tune the receiver’s block interval
 - Determined by `spark.streaming.blockInterval`
 - For most receivers, received data is coalesced into blocks of data before storing in memory
 - The number of blocks in each batch determines the number of tasks used to process the received data in a map-like transformation
 - Number of tasks per batch:
 - Batch interval/block interval

Levels of parallelism in data receiving [3/4]

- Number of tasks per batch?
 - Batch interval/block interval
 - Block interval of 200 ms will create 10 tasks per 2 second batches
 - If the number of tasks is too low?
 - All available cores might not be available to use all the data
 - To increase number of tasks for a given batch interval?
 - Reduce the block interval

Levels of parallelism in data receiving [4/4]

- Another approach is to tune the receiver’s block interval
 - Determined by `spark.streaming.blockInterval`
 - For most receivers, received data is coalesced into blocks of data before storing in memory
 - The number of blocks in each batch determines the number of tasks used to process the received data in a map-like transformation
 - Number of tasks per batch?
 - Batch interval/block interval
 - Block interval of 200 ms will create 10 tasks per 2 second batches
 - If the number of tasks is too low?
 - All available cores might not be available to use all the data
 - To increase number of tasks for a given batch interval?
 - Reduce the block interval
Levels of parallelism in data receiving [4/4]

The levels of parallelism in data receiving are:

- **What if you did not want to receive data with multiple input streams?**
 - Explicitly repartition the input data stream.
 - Repartitioning is done using the `inputStream.repartition(number of partitions)`.
 - Distributes the received batches of data across the specified number of machines in the cluster before further processing.

Data serialization [1/2]

- Data received through receivers is stored with `StorageLevel.MEMORY_AND_DISK_SER_2`.
- Input data and persisted RDDs generated by DStream transformations are automatically cleared.
- If you are using a window operation of 10 minutes, then Spark Streaming will keep the last 10 minutes of data, and actively throw away older data.
- Data can be retained for a longer duration by setting `streamingContext.remember`.

- **What if you did not want to receive data with multiple input streams?**
 - Explicitly repartition the input data stream.
 - Repartitioning is done using the `inputStream.repartition(number of partitions)`.
 - Distributes the received batches of data across the specified number of machines in the cluster before further processing.

Data serialization [2/2]

- RDDs generated by streaming computations may be persisted in memory.
- Persisted RDDs generated by streaming computations are persisted with `StorageLevel.MEMORY_ONLY_SER`.
- If you are using batch intervals of a few seconds and no window operations:
 - You can try disabling serialization in persisted data.
 - Reduce CPU overheads due to serialization, without excessive GC overheads.

Spark-streaming example [1/5]

- Step-by-step approach to finding the top 10 hashtags from a stream of tweets using `counts` [Every second there is an output over data from the last 300 seconds]
- Step-1: Create a Spark context and Twitter credential setup

```scala
SparkConf sparkConf = new SparkConf().setAppName("Spark-streaming-twitter-trends");
// Twitter authentication details … [Not included here]
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(1000));
JavaDStream<Status> twitterStream = (JavaDStream<Status>) TwitterUtils.createStream(jssc);
```

Spark-streaming example [2/5]

- Step-2: Map input DStream of `Status` to `String`

```scala
JavaDStream<String> statuses = twitterStream.map(new Function<Status, String>() {
  public String call(Status status) {
    return status.getText();
  }
});
statuses.print();
jssc.start();
jssc.awaitTermination();
```

Processing Twitter Streams using Spark

- RDDs generated by streaming computations may be persisted in memory.
- Persisted RDDs generated by streaming computations are persisted with `StorageLevel.MEMORY_ONLY_SER`.
- If you are using batch intervals of a few seconds and no window operations:
 - You can try disabling serialization in persisted data.
 - Reduce CPU overheads due to serialization, without excessive GC overheads.
Spark-streaming example

Step 3: Stream of hashtags from stream of tweets

```java
JavaDStream<String> wordsFromStatuses = statuses.flatMap(new FlatMapFunction<String, String>() {
    public Iterable<String> call(String input) {
        return Arrays.asList(input.split(" "));
    }
});
JavaDStream<String> hashtags = wordsFromStatuses.filter(new Function<String, Boolean>() {
    public Boolean call(String word) {
        return word.startsWith("# ");
    }
});
```

April 9, 2019

Spark-streaming example

Step 4: Count the hashtag over 5 min window

```java
JavaPairDStream<String, Integer> hashtagTuples = hashtags.mapToPair(new PairFunction<String, String, Integer>() {
    public Tuple2<String, Integer> call(String input) {
        return new Tuple2<String, Integer>(input, 1);
    }
});
JavaPairDStream<String, Integer> counts = hashtagTuples.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {
    public Integer call(Integer int1, Integer int2) {
        return int1 + int2;
    }
}, new Function2<Integer, Integer, Integer>() {
    public Integer call(Integer int1, Integer int2) {
        return int1 - int2;
    }
}, new Duration(60 * 5 * 1000), new Duration(1 * 1000));
```

April 9, 2019

Spark-streaming example

Step 5: Find top 10 hashtags according to counts

```java
JavaPairDStream<Integer, String> swapCounts = counts.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
    public Tuple2<Integer, String> call(Tuple2<String, Integer> input) {
        return input.swap();
    }
});
JavaPairDStream<Integer, String> sortedCounts = swapCounts.transformToPair(new Function<JavaPairRDD<Integer, String>, JavaPairRDD<Integer, String>>() {
    public JavaPairRDD<Integer, String> call(JavaPairRDD<Integer, String> input) throws Exception {
        return input.sortByKey(false);
    }
});
sortedCounts.foreach(new Function<JavaPairRDD<Integer, String>, Void>() {
    public Void call(JavaPairRDD<Integer, String> rdd) {
        String out = "Trending hashtags:
        for (Tuple2<Integer, String> t : rdd.take(10)) {
            out = out + t.toString() + "\n";
        }
        System.out.println(out);
    }
});
```

April 9, 2019

The contents of this slide-set are based on the following references

- Spark Streaming Programming Guide:
 https://spark.apache.org/docs/latest/streaming-programming-guide.html#memory-tuning
- Processing Twitter Streams using Spark: