Topics covered in this lecture

- Spark Streaming
 - Architecture and Abstractions
 - Execution
 - Stateful and stateless transformations
 - Windowed operations
 - Performance considerations
 - Example

Spark Streaming Architecture

- Spark Streaming uses a micro-batch architecture
 - Streaming computation is treated as continuous series of batch computations on small batches of data
- Receives data from various input sources and groups into small batches
- New batches are created at regular intervals
 - At the start of each time interval, a new batch is created
 - Any data arriving in that interval is added to the batch
 - Size of batch is controlled by the batch interval

High-level architecture of Spark Streaming
DStream is a sequence of RDDs, where each RDD has one slice of data in stream.

DStreams and the transformations in our example:
- Data from time 0 to 1
- Data from time 1 to 2
- Data from time 2 to 3
- Data from time 3 to 4

DStreams support output operations, such as the `print()` used in our example.
- Output operations are similar to RDD actions in that they write data to an external system.
- But in Spark Streaming they run periodically on each time step, producing output in batches.

Spark Streaming: Execution
- For each input source, Spark Streaming launches receivers:
 - Tasks running within the application’s executors that collect data from source and save as RDDs.
 - Receives input data and replicates it (by default) to another executor for fault tolerance.
 - Data is stored in memory of the executors in the same way that RDDs are cached.

Spark Streaming: Execution:
- StreamingContext in the driver program then periodically runs Spark jobs to:
 - Process this data and …
 - Combine it with RDDs from previous time steps.
Spark Streaming: Fault Tolerance [1/2]

- Spark Streaming offers the **same fault-tolerance** properties for DStreams as Spark has for RDDs
- As long as a copy of the input data is still available, it can recompute any state derived from it using the lineage of the RDDs
 - By rerunning the operations used to process it

Spark Streaming: Fault Tolerance [2/2]

- By default, data is replicated across two nodes
 - Can tolerate single worker failures
- Using lineage graphs to recompute any derived state? Impractical
- Spark Streaming relies on **checkpointing**
 - Saves state periodically
 - Checkpoint every 5-10 batches of data
 - When recovering, only go back to the last checkpoint

Spark Streaming: Transformations

- **Stateless** transformations
 - Each batch does not depend on data of its previous batches
- **Stateful** transformations
 - Use data or intermediate results from previous batches to compute results of the current batch

Stateless Transformations

Stateless transformations

- Stateless transformations are simple RDD transformations being applied on every batch — that is, every RDD in a DStream
- Many of the RDD transformations that we have looked at are also available on DStreams

Examples of stateless transformations

- **map()**
 - Apply a function to each element in the DStream and return a DStream of the result
- `ds.map (x => x + 1)`
Examples of stateless transformations

- **flatMap()**
 - Apply a function to each element in the DStream and return a DStream of the contents of the iterators returned
 - `ds.flatMap(x => x.split(" "))`

Examples of stateless transformations

- **filter()**
 - Return a DStream consisting of only elements that pass the condition passed to filter
 - `ds.filter (x => x != 1)`

Examples of stateless transformations

- **repartition()**
 - Change the number of partitions of the DStream
 - Distributes the received batches across the specified number of machines in the cluster before processing
 - The physical manifestation of the DStream is different in this case
 - `ds.repartition(10)`

Examples of stateless transformations

- **reduceByKey()**
 - Combine values with the same key in each batch
 - `ds.reduceByKey((x, y) => x + y)`

Examples of stateless transformations

- **groupByKey()**
 - Group values with the same key in each batch
 - `ds.groupByKey()`

A note about stateless operations

- Although it may seem that they are being applied over the whole stream ...
 - Each DStream has multiple RDDs (batches)
 - Stateless transformation applies **separately** to each RDD
 - E.g. `reduceByKey()` will reduce data for each timestep, but not across timesteps
Stateful transformations

- Operations on DStreams that track data across time
 - Data from previous batches used to generate results for a new batch
- Two types of windowed operations
 - Act over sliding window of time periods
 - `updateStateByKey()` tracks state across events for each key

Windowed Transformations

- Compute results across a longer time period than the batch interval
 - Two parameters: window and sliding durations
 - Both must be a multiple of the batch interval
- Window duration controls how many previous batches of data are considered
 - Window Durations/batchInterval
 - If the batch interval is 10 seconds and the sliding window is 30 seconds ... last 3 batches

A windowed stream:
Window duration (3) & slide duration (2)

- Every 2 time steps, we compute a result over the previous 3 time steps

Simplest window operation on a DStream

- `window()`
 - Returns new DStream with data from the requested window
 - Each RDD in the DStream resulting from `window()`, will contain data from multiple batches
Other operations on top of `window()`
- `reduceByWindow` and `reduceByKeyAndWindow`
- Includes a special form that allows reduction to be performed incrementally
 - Considering only the data coming into the window and the data that is going out
 - Special form requires an inverse of the reduce function
 - Such as `–` for `+`
 - More efficient for large windows if your function has an inverse

Difference between naïve and incremental `reduceByWindow()`

Maintaining state across batches
- `updateStateByKey()`
 - Provides access to a state variable for DStreams of key/value pairs
 - Given a DStream of (key, event) pairs
 - Construct a new DStream of (key, state) pairs by taking a function that specifies how to update the state for each key, given new events

Performance considerations
- Batch size
 - **500 milliseconds** is considered a good minimum size
 - Start with a large batch size (~10 seconds) and work down to a smaller batch size
 - If processing times remain consistent, explore decreasing the batch size
 - If the processing times increase? You have reached the limit
- Window size
 - Has a great impact on performance
 - Consider increasing this for expensive operations

Garbage collections and memory usage
- Cache RDDs in serialized form
 - Using Kryo for serialization reduces this even more
 - Reduces space for in-memory representations
 - By default, Spark uses an in-memory cache
 - Can also evict RDDs older than a certain time-period
 - `spark.cleaner.ttl`
 - This preemptive eviction of RDDs also reduces the garbage collection pressure
Levels of parallelism in data receiving [1/4]

- Each input DStream creates a single receiver that receives a single stream of data
- Receiving multiple data streams possible by creating multiple input DStreams
 - Each DStream must be configured to receive different partitions of the data stream from the source(s)
- For a Kafka DStream receiving data on two topics?
 - Split into two DStreams each receiving one topic
 - Two receivers would run and receive data in parallel

April 4, 2017
CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University

Levels of parallelism in data receiving [2/4]

- Another approach is to tune the receiver’s block interval
 - Determined by spark.streaming.blockInterval
- For most receivers, received data is coalesced into blocks of data before storing in memory
- The number of blocks in each batch determines the number of tasks used to process the received data in a map-like transformation
- Number of tasks per batch?
 - Batch interval/block interval

April 4, 2017
CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University

Levels of parallelism in data receiving [3/4]

- Number of tasks per batch?
 - Batch interval/block interval
- Block interval of 200 ms will create 10 tasks per 2 second batches
- If the number of tasks is too low?
 - All available cores might not be available to use all the data
- To increase number of tasks for a given batch interval?
 - Reduce the block interval

April 4, 2017
CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University

Levels of parallelism in data receiving [4/4]

- What if you did not want to receive data with multiple input streams?
 - Explicitly repartition the input data stream
- Repartitioning is done using the inputStream.repartition(<number of partitions>)
 - Distributes the received batches of data across the specified number of machines in the cluster before further processing

April 4, 2017
CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University

Data serialization [1/2]

- Data received through receivers is stored with StorageLevel.MEMORY_AND_DISK_SER_2
- Data that does not fit in memory spills over to disk
- Input data and persisted RDDs generated by DStream transformations are automatically cleared
 - If you are using a window operation of 10 minutes, then Spark Streaming will keep around the last 10 minutes of data, and actively throw away older data
- Data can be retained for a longer duration by setting streamingContext.remember

April 4, 2017
CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University

Data serialization [2/2]

- RDDs generated by streaming computations may be persisted in memory
 - Persisted RDDs generated by streaming computations are persisted with StorageLevel.MEMORY_ONLY_SER
- If you are using batch intervals of a few seconds and no window operations?
 - You can try disabling serialization in persisted data
 - Reduce CPU overheads due to serialization, without excessive GC overheads.

April 4, 2017
CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University
Processing Twitter Streams using Spark

April 4, 2017

Spark-streaming example [1/5]

- Step-by-step approach to finding the top 10 hashtags from a stream of tweets using counts (Every second there is an output over data from the last 300 seconds)
- Step-1: Create a SparkStream context and Twitter credential setup

```java
SparkConf sparkConf = new SparkConf().setAppName("Spark-streaming-twitter-trends");
```

//Twitter authentication details - [Not included here]

//JavaStreamingContext
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(1000));

//Discretized stream of tweets
JavaDStream<Status> twitterStream = (JavaDStream<Status>) TwitterUtils.createStream(jssc);
```

Spark-streaming example [2/5]

- Step-2: Map Input DStream of Status to String

```java
//Discretized stream of Strings
JavaDStream<String> statuses = twitterStream.map(
 new Function<Status, String>() {
 public String call(Status status) {
 return status.getText();
 }
 });

statuses.print();

//trigger the execution of code
jssc.start();
jssc.awaitTermination();
```

Spark-streaming example [3/5]

- Step-3: Stream of hashtags from stream of tweets

```java  
//Tokenize words from status
JavaDStream<String> wordsFromStatuses = statuses.flatMap(
 new FlatMapFunction<String, String>() {
 public Iterable<String> call(String input) {
 return Arrays.asList(input.split(" "));
 }
 });

//Extract hashtags
JavaDStream<String> hashTags = wordsFromStatuses.filter(
 new Function<String, Boolean>() {
 public Boolean call(String word) {
 return word.startsWith("#");
 }
 });
```

Spark-streaming example [4/5]

- Step-4: Count the hashtag over 5 min window

```java
//Mapping to tuple of (hashtag,1) in order to count
JavaPairDStream<String, Integer> hashtagtuples = hashTags.mapToPair(
 new PairFunction<String, String, Integer>() {
 public Tuple2<String, Integer> call(String input) {
 return new Tuple2<String, Integer>(input, 1);
 }
 });

//Aggregating over window of 5 min and slide of 1s
JavaPairDStream<Integer, String> counts = hashtagtuples.reduceByKeyAndWindow(
 new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer int1, Integer int2) {
 return int1 + int2;
 }
 },
 new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer int1, Integer int2) {
 return int1 - int2;
 }
 },
 new Duration(60 * 5 * 1000), new Duration(1 * 1000));
```

Spark-streaming example [5/5]

- Step-5: Find top 10 hashtags according to counts

```java
JavaPairDStream<Integer, String> swapCounts = counts.mapToPair(
 new PairFunction<Tuple2<String, Integer>, Integer, String>() {
 public Tuple2<Integer, String> call(Tuple2<String, Integer> input) {
 return input.swap();
 }
 });

JavaPairDStream<Integer, String> sortedCount = swapCounts.transformToPair(
 new Function<JavaPairRDD<Integer, String>, JavaPairRDD<Integer, String>>(){
 public JavaPairRDD<Integer, String> call(JavaPairRDD<Integer, String> input)
 throws Exception {
 return input.sortByKey(false);
 }
 });

sortedCount.foreach(new Function<JavaPairRDD<Integer, String>, Void> () {
 public Void call(JavaPairRDD<Integer, String> rdd) {
 String out = "Trending hashtags:
";
 for (Tuple2<Integer, String> t: rdd.take(10)) {
 out = out + t.toString() + "
 }
 System.out.println(out);
 }});
```

CS455: Introduction to Distributed Systems [Spring 2017]
Dept. Of Computer Science, Colorado State University
The contents of this slide-set are based on the following references:

