CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING]

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey

Topics covered in today’s lecture

- OSI
- Internet Architecture
- IP routing

OSI network architecture

- Model is a product of the Open Systems Interconnection (OSI) project
- At the International Organization for Standardization (ISO)
- Partitions network functionality into 7 layers
- Physical
 - Handles transmission of raw bits
 - Standardizes electrical, mechanical, and signaling interfaces
- 0 bit should be received as 0 not 1

OSI network architecture: Data link

- Collects stream of bits into a frame
 - Puts special bit pattern at the start/end of each frame
 - Frames, not raw bits, are delivered to host
- Compute checksum for frame
 - Check for correctness and request retransmission
- Network adaptors & device drivers implement this
OSI network architecture

- **Network layer**
 - Handles routing among nodes in a **packet-switched** network
 - Unit of data exchanged is **packet** not frames

- **Layers implemented on all network nodes?**
 - Physical, data and network

OSI Architecture

Usually run only on the end host, not switches

One or more nodes within the network

How messages flowing through the OSI stack will appear on the network

- Data link layer header
- Network layer header
- Transport layer header
- Session layer header
- Presentation layer header
- Application layer header
- Data link layer trailer

OSI network architecture

- **Transport**
 - Implements process-process **channel**
 - **Messages** (not packet or frame)

- **Presentation**
 - **Format** of data exchanged between peers

- **Session**
 - **Namespace** to tie different transport-streams that are part of the application

Internet architecture

- Evolved out of experiences with ARPANET
- Funded by ARPA of the US DoD
- Around before the OSI architecture
- Unlike OSI, this is a **4-level** model
Internet protocol graph

- FTP
- HTTP
- NV
- TFTP
- TCP
- UDP
- IP
- NETn...

End-to-End protocols

Internet architecture

- DOES NOT imply strict layering
 - Bypassing immediate lower layers is possible
- Layer has an hour-glass shape
 - Wide at top and bottom
 - Narrow in the middle
 - IP is the focal point of the architecture

Protocol implementation issues

Where are the processes?

- Process-per-protocol
- Process-per-message

Process-per-message model: Associate processes per message

- Treat each protocol as a static piece of code
- Protocol graph traversed in sequence of procedure calls
- When message arrives:
 - Dispatch process to move message up the protocol graph
 - At each level procedure implementing protocol is invoked
- Sending message?
 - Application process invokes appropriate procedures
Comparison

- Process-per-protocol
 - Context switch per level
- Process-per-message
 - Procedure call per level

INTERNETWORKING

Internetwork

- Arbitrary collection of interconnected networks
 - To provide some sort of host-host packet delivery service
- Network of networks
 - Made up of lots of smaller networks

Internet Protocol (IP)

- Key tool to build scalable, heterogeneous networks
- Runs on all nodes (hosts and routers)
- Allows nodes and networks to function as a single logical network
- Possible to build an internetwork without IP
 - But IP is the only one that has faced scale issues
Example depicting how hosts (H1-H8) are logically connected

The IP service model
- Datagram model of delivery
 - Connectionless
 - Best effort
- Addressing scheme
 - Identifies all hosts in the internetwork

Datagram delivery
- Datagram is a type of packet
 - Sent in a connectionless fashion
- No need for any advance setup mechanisms
 - That tell network what to do when packet arrives
- Every datagram contains enough information
 - To forward packet to correct destination

The network makes a best effort to send datagrams across
- Things that could go wrong with the packets
 - Lost
 - Corrupted
 - Misdelivered
 - Out of order and duplicates
- When things go wrong, the network does nothing
 - No attempt to recover from the failure

Keeping routers simple was one of the original design goals of IP
- Important to run over anything
- Putting extra functionality into routers to make up for network deficiencies?
 - Not a good idea
- Higher-level protocols/apps that run above IP need to be aware of failure modes

The IP Packet format consists of a header followed by bytes of data
- Represented as a succession of 32-bit words
- Packet formats designed to align on 32-bit boundaries
 - Simplifies task of processing in software
- Transmission order
 - Top word transmitted first
 - Leftmost byte of each word transmitted first
The IPv4 packet header

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version HLen TOS Length</td>
<td>Ident Flags Offset</td>
<td>TTL Protocol Checksum</td>
<td>SourceAddr DestinationAddr</td>
<td>Options (variable) Pad (variable) Data</td>
<td></td>
</tr>
</tbody>
</table>

IP Packet format

- **Version**
 - Makes it easy to redefine packet format later on
- **HLen**
 - Specifies length of header in 32-bit words
 - When there are no options (most of the time)
 - Header is 5 words or 20 bytes
- **TOS (type of service)**
 - Allow packets to be treated differently
 - Based on application needs

- **Length**
 - Length of the datagram in bytes
 - Maximum size of IP datagram is 2^{16} bytes
- **SECOND WORD OF IP PACKET**
 - Ident, Flags, Offset
 - Information about fragmentation

- **TTL (time to live)**
 - Hop-count not timer (as originally intended)
- **Protocol field**
 - Demultiplexing key
 - Identifies higher-level protocol
 - TCP (6), UDP (17)
- **Checksum**
 - Consider IP header as a sequence of 16-bit words

- **SourceAddr**
 - Decide if packet should be accepted
 - Also used for replies
- **DestinationAddr**
 - Full address of destination
 - Forwarding decisions are made at each router
- **Presence or absence of options**
 - Can be checked based on size of HLen

- **TOS field (Type of Service)**
 - Meant to specify how the datagram should be handled as it traversed the internet
 - Preference for low delay
 - Preference for high reliability
 - In practice TOS was not widely implemented
The 8 bits allocated to TOS can be divided into 5 parts:

- **Precedence bits**: Indicates importance of datagram.
 - Low delay
 - High throughput
 - High reliability

- **Unused**: Most Significant Bit (D T R Unused)

Providing host-to-host service model over heterogeneous collection of networks:

- Each network technology has its own idea of how large a packet can be:
 - Ethernet: 1500 bytes
 - FDDI: 4500 bytes

Every network type has a Maximum Transmission Unit (MTU):

- Largest IP datagram that it can carry in its frame
- Smaller than the largest packet-size of network
- IP datagram needs to fit in payload of link-layer frame

Fragmentation necessary when datagram path includes network with smaller MTU:

- All fragments carry same identifier in **Ident** field
 - To enable fragment reassembly
 - Chosen by the source host
- If all fragments do not arrive at receiving host?
 1. Receiver gives up reassembly
 2. **Discards** fragments that did arrive
- IP **does not attempt** to recover from missing fragments

A simple internetwork: Sending IP datagrams from H1 to H8

- Network 1 (Ethernet)
- Network 2 (Ethernet)
- Network 3 (FDDI)
- Network 4 (point-to-point)

IP datagrams traversing a sequence of physical networks:

- H1
- R1
- R2
- R3
- H8
IPv4 Packet header

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4</td>
</tr>
<tr>
<td>HLen</td>
<td>4</td>
</tr>
<tr>
<td>TOS</td>
<td>1</td>
</tr>
<tr>
<td>Flags</td>
<td>1</td>
</tr>
<tr>
<td>Offset</td>
<td>1</td>
</tr>
<tr>
<td>TTL</td>
<td>8</td>
</tr>
<tr>
<td>Protocol</td>
<td>1</td>
</tr>
<tr>
<td>Checksum</td>
<td>4</td>
</tr>
<tr>
<td>Source Addr</td>
<td>16</td>
</tr>
<tr>
<td>Destination Addr</td>
<td>16</td>
</tr>
<tr>
<td>Options (variable)</td>
<td>variable</td>
</tr>
<tr>
<td>Pad (variable)</td>
<td>variable</td>
</tr>
<tr>
<td>Data</td>
<td>variable</td>
</tr>
</tbody>
</table>

Header fields used in IP fragmentation:

Fragmentation occurs at 8-byte boundaries

- **Start of header**
 - Ident = x
 - Offset = 64
 - Rest of header
 - 512 data bytes

- **Start of header**
 - Ident = x
 - Offset = 128
 - Rest of header
 - 376 data bytes

DATAGRAM FORWARDING

Datagram forwarding in IP:
- Datagrams contains IP address of destination
 - Network part uniquely identifies a single physical network
 - Hosts/routers that share the network part
 - Connected to same physical network
 - Every physical network has a router
 - Connected to at least one other physical network

A simple internetwork:
- Forwarding table for router R2

```
Network 1 (Ethernet)
Network 2 (Ethernet)
Network 3 (FDDI)
Network 4 (point-to-point)
```

- Network 1: H1, H2, H3
- Network 2: R1, H7, B3, H8
- Network 3: R2
- Network 4: H4, H5, H6

IPv4 Packet header

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4</td>
</tr>
<tr>
<td>HLen</td>
<td>4</td>
</tr>
<tr>
<td>TOS</td>
<td>1</td>
</tr>
<tr>
<td>Flags</td>
<td>1</td>
</tr>
<tr>
<td>Offset</td>
<td>1</td>
</tr>
<tr>
<td>TTL</td>
<td>8</td>
</tr>
<tr>
<td>Protocol</td>
<td>1</td>
</tr>
<tr>
<td>Checksum</td>
<td>4</td>
</tr>
<tr>
<td>Source Addr</td>
<td>16</td>
</tr>
<tr>
<td>Destination Addr</td>
<td>16</td>
</tr>
<tr>
<td>Options (variable)</td>
<td>variable</td>
</tr>
<tr>
<td>Pad (variable)</td>
<td>variable</td>
</tr>
<tr>
<td>Data</td>
<td>variable</td>
</tr>
</tbody>
</table>
Example forwarding table:

For Router R2

<table>
<thead>
<tr>
<th>Network Num</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
</tr>
</tbody>
</table>

Error Reporting in IP communications

- IP drops datagrams when the going gets tough
 - But does not fail silently
- IP always configured with a companion protocol
 - Internet Control Message Protocol (ICMP)

ICMP defines a collection of error messages
- When router/host is unable to process datagram successfully
 - ICMP error message sent back to source
- Examples
 - Destination host is unreachable
 - Reassembly process failed
 - TTL reached 0
 - IP header checksum failed

ICMP also defines some control messages
- Router sends control messages back to host
 - Example: ICMP-Redirect tells that there is a better route to destination
 - Network has two routers R1 and R2 and host uses R1 as default
 - When R1 receives a datagram and it knows R2 is a better choice
 - Send ICMP-Redirect to host
 - Host then uses R2 for future datagrams to that host

The contents of this slide-set are based on the following references