CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
[THREAD SAFETY & MAPREDUCE]

Are you set on reinventing the wheel?
Shunning libraries and frameworks, are you, despite the peril?
Emerge scathed, from arduous projects, you will
Survived, these have, the scrutiny of a thousand probing eyes
Abrogating your choice, is what this implies

Shrideep Pallickara
Computer Science
Colorado State University

February 20, 2018

Frequently asked questions from the previous class survey

- ConcurrentHashMap
 - Does the lock operate over a consecutive space?
 - During resize operations can elements be added/removed?

- Latches:
 - Why not use a counter object, that is guarded by synchronous methods?
Topics covered in this lecture

- Thread safety wrap-up
 - Synchronizers and summary
- Map Reduce

SYNCHRONIZERS
Semaphores

- Counting semaphores control the **number of activities** that can:
 - Access a certain resource
 - Perform a given action

- Used to implement resource pools or impose bounds on a collection

Semaphores

- Manage a set of virtual **permits**
 - Initial number passed to the constructor

- Activities **acquire** and **release** permits

- If **no permits** are available?
 - **acquire blocks** until one is available

- The release method returns a permit to the semaphore
Semaphores are useful for implementing resource pools

- Block if the pool is empty
 - Unblock if the pool is non-empty
- Initialize a semaphore to the pool size
- acquire a permit before trying to fetch a resource from pool
- release the permit after putting the resource back in pool
- acquire blocks until the pool is non-empty

Binary semaphores

- Semaphore with an initial count of 1
- Can be used as a mutex with non-entrant locking semantics
 - Whoever holds the sole permit holds the mutex
Using Semaphores to bound a collection

```java
public BoundedHashSet<T> {
    private final Set<T> set;
    private final Semaphore sem;
    public BoundedHashSet(int bound) {
        this.set = Collections.synchronizedSet(new HashSet<T>());
        sem = new Semaphore(bound);
    }
    public boolean add(T o) throws InterruptedException {
        sem.acquire();
        boolean wasAdded = false;
        try {
            wasAdded = set.add(o);
            return wasAdded;
        } finally {
            if (!wasAdded) sem.release();
        }
    }
    public boolean remove(Object o) {
        boolean wasRemoved = set.remove(o);
        if (wasRemoved) sem.release();
        return wasRemoved;
    }
}
```

Barriers

- Barriers are similar to latches in that they **block a group of threads** till an event has occurred.
- All threads must come together at a **barrier point at the same time** to proceed.
 - Latches wait for events, barriers **wait for other threads**
Barriers and dinner …

- Family rendezvous protocol

- Everyone meet at Panera @ 6:00 pm;
 - Once you get there, stay there … till everyone shows up
 - Then we’ll figure out what we do next

Barriers

- Often used in simulations where work to calculate one step can be done in parallel
 - But all work associated with a given step must complete before advancing to the next step

- All threads complete step k, before moving on to step $k+1$
CyclicBarrier

- Allows a fixed number of parties to rendezvous at a fixed point
- Useful in parallel iterative algorithms
 - Break problem into fixed number of independent subproblems

Creation of a CyclicBarrier
- Runnable cyclicBarrierAction = ...;
 CyclicBarrier cyclicBarrier =
 new CyclicBarrier(2, cyclicBarrierAction);

Using Cyclic Barriers

```java
class Solver {
    final int N; final CyclicBarrier barrier;
    class Worker implements Runnable {
        int myRow;
        Worker(int row) { myRow = row; }
        public void run() {
            while (!done()) {
                processRow(myRow);
                try {
                    barrier.await();
                } catch (BrokenBarrierException ex) { ... }
            }
        }
    }
    public Solver(float[][] matrix) {
        data = matrix; N = matrix.length;
        barrier = new CyclicBarrier(N, new Runnable() { public void run() {
            mergeRows(...); }
        });
        for (int i = 0; i < N; ++i)
            new Thread(new Worker(i)).start(); //DO NOT START THREAD in constructor.
        waitUntilDone();
    }
}
```

Source: From the Java API
Exchanger

- Another type of barrier
- Two-party barrier
- Parties **exchange data** at the barrier point
- Useful when asymmetric activities are performed
 - Producer-consumer problem
- When 2 threads exchange objects via Exchanger
 - Safe publication of objects to other party

Thread Safety Summary
Thread Safety: Summary

- It’s all about *mutable, shared state*
 - The less mutable state there is, the easier it is to ensure thread-safety
- Make fields **final** unless they need to be mutable
- **Immutable** objects are automatically thread-safe
- **Encapsulation** makes it practical to manage complexity

Thread Safety: Summary

- Guard each mutable variable with a **lock**
- Guard all variables in an invariant with the **same lock**
- Hold locks for the **duration** of compound actions

- Program that access mutable variables from multiple threads without synchronization?
 - Broken program

- Include thread-safety in the design process
 - Document if your class is not thread-safe

- Document your synchronization policy

Thread Safety: Summary [4/4]

- Rather than scattering access to shared state throughout your programs and attempting *ad hoc* reasoning about interleaved access

 - Structure program to facilitate reasoning about concurrency
 - Use a set of standard synchronization primitives to control access to shared state
MapReduce: What we will look at

- MapReduce Runtimes
- Contrast with other systems
- Why?
- HDFS
- MapReduce Paper
- How to express programs using Hadoop MapReduce
Cloud Computing

February 20, 2018

The volume of data that we produce has increased dramatically

- IDC (International Data Corporation) estimates
 - 180 EB \((10^{18}) \) in 2006
 - 1.8 ZB \((10^{21}) \) in 2011
 - Roughly a disk drive per person!
 - 40 ZB by 2020
Some of the sources of this deluge

- New York Stock Exchange
 - 1 TB of new trade data every day
- Facebook
 - $\sim 10^{12}$ photos
- Internet Archive
 - Stores 2 PB of data … growing at 20 TB per month
- LHC produces 15 PB per year

Amount of data generated by machines will outpace what people produce

- Machine logs
- RFID readers
- Sensor networks
- Instruments
- Vehicle GPS traces
- IoT
 - 20-35 billion IoT devices are expected to be online in 2020
Hard disk capacities, seek rates, and transfer times

- **1990**
 - 1 GB HDDs with a transfer speed of 4.4 MB/sec

- **Now**
 - 1 TB hard drives are common
 - But the transfer speed is just 100 MB/sec
 - Writing is even slower!

Data transfers can be improved by using multiple disks

- What if we use 100 disk drives?
 - Each holding 1/100th of the data

- We could have *cumulative transfer* speeds of up to 100 x 100 MB/sec or 10 GB/sec

- But isn’t using 1/100th of disk wasteful?
 - Not if you store a 100 different datasets on these disks
 - Provide shared access to the disks
But there's more than just reading and writing from multiple disks in parallel

- **Cope with hardware failures**
 - As the number of components increase, so does the probability of failure

- Analysis tasks need to be able to **combine data**
 - Dataset is dispersed over multiple disks

What MapReduce provides …

- Programming model that **abstracts** the problem from disk reads and writes

- Transform the problem into **computations** over sets of keys and values

- Supports **distributed processing** on large datasets over a cluster of computers
But why not use databases with lots of disks? [1/2]

- Another trend in disk drives
 - Seek time is improving *much slower* than transfer rates

- If data access pattern is dominated by seeks?
 - It takes longer to read or write large portions of the dataset than streaming through it
 - Streaming through dataset operates at transfer speed

But why not use databases with lots of disks? [2/2]

- Updating a small proportion of records in the dataset
 - Traditional B-Tree works well

- For updating a majority of the dataset
 - B-Tree is less efficient than MapReduce which uses Sort/Merge to rebuild the dataset
MapReduce should be seen as being complementary to databases

- MapReduce is good for problems that access the entire dataset
 - Particularly ad hoc analysis
 - Write once, read many times

- RDBMS is good for point queries or updates
 - Dataset has been indexed for low-latency retrieval and update times
 - Read and write many times

Grid Computing/HPC systems

- Distribute work across a cluster of machines that access a shared file system
- Works well for predominantly compute-intensive jobs
 - Problem when access to large data volumes is needed
 - Network bandwidth is a bottleneck and compute nodes become idle
MapReduce tries to collocate data with the compute node

- **Data Locality**
 - Data access is fast since it is local
 - Conserves network bandwidth

- Implementations go to great lengths to conserve it
 - Model network topology

MPI (Message Passing Interface) gives great control to the programmer

- MPI requires **explicit handling** of the mechanics of *data flow*
 - In MapReduce, the mechanics of *data flow* is implicit

- MapReduce spares programmers from having to think about failures
 - Detect failures and schedule replacements on healthy machines
 - Done with a *shared-nothing architecture*
 - MPI programs have to deal with checkpointing and recovery
 - More control but difficult to write
Volunteer computing

- SETI@home
- Volunteers donate cycles not bandwidth
- MapReduce
 - Runs jobs lasting minutes or hours on trusted, dedicated machines with high-bandwidth interconnects
- Volunteer computing
 - Perpetual computations on untrusted machines
 - Highly variable connection speeds and no data locality

MapReduce

Materials Based On
JEFFREY DEAN and SANJAY GHEMAWAT: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150
Source of raw data at Google

- **Crawled** data
- **Log** of the web requests

Several computations work on this raw data to compute derived data

- Inverted indices
- Representation of the graph structure of web documents
- Pages crawled per host
- Most frequent queries in a day …
Most computations are conceptually straightforward

- But data is large
- Computations must be **scalable**
 - Distributed across thousands of machines
 - To complete in a reasonable amount of time

Complexity of managing distributed computations can ...

- Obscure **simplicity** of original computation
- Contributing factors:
 - How to **parallelize** the computation
 - Distribute the **data**
 - Handle **failures**
MapReduce was developed to cope with this complexity

- Express simple computations
- Hide messy details of:
 1. Parallelization
 2. Data distribution
 3. Fault tolerance
 4. Load balancing

MapReduce

- Programming model
- Associated implementation for
 - Processing & Generating large data sets
Programming model

- Computation takes a set of **input** key/value pairs
- Produces a set of **output** key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

Map

- Takes an input pair
- Produces a set of intermediate key/value pairs
Mappers

- If map operations are **independent** of each other they can be performed in parallel
 - **Shared nothing**
- This is usually the case

MapReduce library

- **Groups** all intermediate values with the same intermediate key
- **Passes** them to the Reduce function
Reduce function

- Accepts intermediate key \(I \) and
 - Set of values for that key

- Merge these values together to get
 - Smaller set of value

Counting number occurrences of each word in a large collection of documents

```java
map (String key, String value)
    //key: document name
    //value: document contents

for each word w in value
    EmitIntermediate(w, "1")
```
Counting number occurrences of each word in a large collection of documents

```
reduce (String key, Iterator values)
   //key: a word
   //value: a list of counts

   int result = 0;
   for each v in values
       result += ParseInt(v);
   Emit(AsString(result));
```

Sums together all counts emitted for a particular word

The contents of this slide set are based on the following references

- Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150