CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS

[THREAD SAFETY & MAPREDUCE]

Are you set on reinventing the wheel?
Shunning libraries and frameworks, are you, despite the peril?
Emerge scathed, from arduous projects, you will
Survived, these have, the scrutiny of a thousand probing eyes
Abrogating your choice, is what this implies

Shrideep Pallickara
Computer Science
Colorado State University

February 26, 2019

Frequently asked questions from the previous class survey
Topics covered in this lecture

- Thread safety wrap-up
 - Synchronizers and summary
- Map Reduce
Semaphores

- Counting semaphores control the **number of activities** that can:
 - Access a certain resource
 - Perform a given action
- Used to implement resource pools or impose bounds on a collection

Semaphores

- Manage a set of virtual **permits**
 - Initial number passed to the constructor
- Activities **acquire** and **release** permits
- If no **permits** are available?
 - acquire **blocks** until one is available
- The release method returns a permit to the semaphore
Semaphores are useful for implementing resource pools

- Block if the pool is empty
 - Unblock if the pool is non-empty
- Initialize a semaphore to the pool size
- acquire a permit before trying to fetch a resource from pool
- release the permit after putting the resource back in pool
- acquire blocks until the pool is non-empty

Binary semaphores

- Semaphore with an initial count of 1
- Can be used as a mutex with non-entrant locking semantics
 - Whoever holds the sole permit holds the mutex
Using Semaphores to bound a collection

```java
public BoundedHashSet<T> {
    private final Set<T> set;
    private final Semaphore sem;
    public BoundedHashSet(int bound) {
        this.set = Collections.synchronizedSet(new HashSet<T>());
        sem = new Semaphore(bound);
    }
    public boolean add(T o) throws InterruptedException {
        sem.acquire();
        boolean wasAdded = false;
        try {
            wasAdded = set.add(o);
            return wasAdded;
        } finally {
            if (!wasAdded) sem.release();
        }
    }
    public boolean remove(Object o) {
        boolean wasRemoved = set.remove(o);
        if (wasRemoved) sem.release();
        return wasRemoved;
    }
}
```

Barriers

- Barriers are similar to latches in that they **block a group of threads** till an event has occurred.
- All threads must come together at **barrier point at the same time** to proceed.
 - Latches wait for events, barriers **wait for other threads**.
Barriers and dinner ...

- Family rendezvous protocol
- Everyone meet at Panera @ 6:00 pm;
 - Once you get there, stay there ... till everyone shows up
 - Then we'll figure out what we do next

Barriers

- Often used in simulations where work to calculate one step can be done in parallel
 - But all work associated with a given step must complete before advancing to the next step
- All threads complete step k, before moving on to step $k+1$
CyclicBarrier

- Allows a fixed number of parties to rendezvous at a fixed point
- Useful in parallel iterative algorithms
 - Break problem into fixed number of independent subproblems

Creation of a CyclicBarrier
- Runnable cyclicBarrierAction = ...;
- CyclicBarrier cyclicBarrier =
 new CyclicBarrier(2, cyclicBarrierAction);

Using Cyclic Barriers

class Solver {
 final int N; final CyclicBarrier barrier;
 class Worker implements Runnable {
 int myRow;
 Worker(int row) { myRow = row; }
 public void run() {
 while (!done()) {
 processRow(myRow);
 try {
 barrier.await();
 } catch (BrokenBarrierException ex) {
 ...
 }
 }
 }
 }
 public Solver(float[][] matrix) {
 data = matrix; N = matrix.length;
 barrier = new CyclicBarrier(N, new Runnable() {
 public void run() {
 mergeRows(...);
 }
 });
 for (int i = 0; i < N; ++i)
 new Thread(new Worker(i)).start(); //DO NOT START THREAD in constructor.
 waitUntilDone();
 }
}
Exchanger

- Another type of barrier
- Two-party barrier
- Parties **exchange data** at the barrier point
- Useful when asymmetric activities are performed
 - Producer-consumer problem
- When 2 threads exchange objects via Exchanger
 - Safe publication of objects to other party
Thread Safety: Summary

1. It’s all about **mutable, shared state**
 - The less mutable state there is, the easier it is to ensure thread-safety

2. Make fields **final** unless they need to be mutable

3. **Immutable** objects are automatically thread-safe

4. **Encapsulation** makes it practical to manage complexity

Thread Safety: Summary

5. Guard each mutable variable with a **lock**

6. Guard all variables in an invariant with the **same lock**

7. Hold locks for the **duration** of compound actions

- Program that accesses mutable variables from multiple threads without synchronization?
 - Broken program

- Include thread-safety in the design process
 - Document if your class is not thread-safe

- Document your synchronization policy

Thread Safety: Summary [4/4]

- Rather than scattering access to shared state throughout your programs and attempting ad hoc reasoning about interleaved access

- Structure program to facilitate reasoning about concurrency

- Use a set of standard synchronization primitives to control access to shared state
MapReduce: What we will look at

- Why?
- Contrast with other systems
- MapReduce Runtimes
- HDFS
- MapReduce Paper
- How to express programs using Hadoop MapReduce
The volume of data that we produce has increased dramatically

- IDC (International Data Corporation) estimates
 - 180 EB (10^{18}) in 2006
 - 1.8 ZB (10^{21}) in 2011
 - Roughly a disk drive per person!
 - 40 ZB by 2020
Some of the sources of this deluge

- New York Stock Exchange
 - 1 TB of new trade data every day
- Facebook
 - 10^{12} photos
- Internet Archive
- YouTube
- LHC produces 15 PB per year

February 26, 2019
CS455: Introduction to Distributed Systems [Spring 2019]
Dept. Of Computer Science, Colorado State University

Amount of data generated by machines will outpace what people produce

- Machine logs
- RFID readers
- Sensor networks
- Instruments
- Vehicle GPS traces
- IoT
 - 20-35 billion IoT devices are expected to be online in 2020

February 26, 2019
CS455: Introduction to Distributed Systems [Spring 2019]
Dept. Of Computer Science, Colorado State University
Hard disk capacities, seek rates, and transfer times

- 1990
 - 1 GB HDDs with a transfer speed of 4.4 MB/sec

- Now
 - 1 TB hard drives are common
 - But the transfer speed is just 100 MB/sec
 - Writing is even slower!

Data transfers can be improved by using multiple disks

- What if we use 100 disk drives?
 - Each holding 1/100th of the data

- We could have *cumulative transfer* speeds of up to 100 x 100 MB/sec or 10 GB/sec

- But isn’t using 1/100th of disk wasteful?
 - Not if you store a 100 different datasets on these disks
 - Provide shared access to the disks
But there’s more than just reading and writing from multiple disks in parallel

- **Cope with hardware failures**
 - As the number of components increase, so does the probability of failure

- Analysis tasks need to be able to **combine data**
 - Dataset is dispersed over multiple disks

What MapReduce provides ...

- Programming model that **abstracts** the problem from disk reads and writes

- Transform the problem into **computations** over sets of keys and values

- Supports **distributed processing** on large datasets over a cluster of computers
But why not use databases with lots of disks? [1/2]

- Another trend in disk drives
 - Seek time is improving *much slower* than transfer rates

- If data access pattern is dominated by seeks?
 - It takes longer to read or write large portions of the dataset than streaming through it
 - Streaming through dataset operates at transfer speed

But why not use databases with lots of disks? [2/2]

- Updating a small proportion of records in the dataset
 - Traditional B-Tree works well

- For updating a majority of the dataset
 - B-Tree is less efficient than MapReduce which uses Sort/Merge to rebuild the dataset
MapReduce should be seen as being complementary to databases

- MapReduce is good for problems that access the **entire dataset**
 - Particularly *ad hoc* analysis
 - Write once, read many times

- RDBMS is good for point queries or updates
 - Dataset **has been indexed** for low-latency retrieval and update times
 - Read and write many times

Grid Computing/HPC systems

- Distribute work across a cluster of machines that access a **shared file system**
- Works well for predominantly compute-intensive jobs
 - Problem when access to large data volumes is needed
 - Network bandwidth is a bottleneck and compute nodes become idle
MapReduce tries to collocate data with the compute node

- **Data Locality**
 - Data access is fast since it is local
 - Conserves network bandwidth

- Implementations go to great lengths to conserve it
 - Model network topology

MPI (Message Passing Interface) gives great control to the programmer

- MPI requires **explicit handling** of the mechanics of data flow
 - In MapReduce, the mechanics of data flow is implicit

- MapReduce spares programmers from having to think about failures
 - Detect failures and schedule replacements on healthy machines
 - Done with a **shared-nothing architecture**
 - MPI programs have to deal with checkpointing and recovery
 - More control but difficult to write
Volunteer computing

- SETI@home
- Volunteers donate cycles not bandwidth
- MapReduce
 - Runs jobs lasting minutes or hours on trusted, dedicated machines with high-bandwidth interconnects
- Volunteer computing
 - Perpetual computations on untrusted machines
 - Highly variable connection speeds and no data locality

MapReduce

Materials Based On

JEFFREY DEAN and SANJAY GHEMAWAT: MapReduce: Simplified
Data Processing on Large Clusters. OSDI 2004: 137-150
Source of raw data at Google

- Crawled data
- Log of the web requests

Several computations work on this raw data to compute derived data

- Inverted indices
- Representation of the graph structure of web documents
- Pages crawled per host
- Most frequent queries in a day …
Most computations are conceptually straightforward

- But data is large

- Computations must be **scalable**
 - Distributed across thousands of machines
 - To complete in a reasonable amount of time

Complexity of managing distributed computations can ...

- Obscure **simplicity** of original computation

- Contributing factors:
 - How to **parallelize** the computation
 - Distribute the **data**
 - Handle **failures**
MapReduce was developed to cope with this complexity

- Express simple computations
- Hide messy details of:
 1. Parallelization
 2. Data distribution
 3. Fault tolerance
 4. Load balancing

MapReduce

- Programming model
- Associated implementation for
 - Processing & Generating large data sets
Programming model

- Computation takes a set of **input** key/value pairs
- Produces a set of **output** key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

Map

- Takes an input pair
- Produces a set of intermediate key/value pairs
Mappers

- If map operations are independent of each other they can be performed in parallel
 - Shared nothing
- This is usually the case

MapReduce library

- **Groups** all intermediate values with the same intermediate key
- **Passes** them to the Reduce function
Reduce function

- Accepts intermediate key I and
 - Set of values for that key

- **Merge** these values together to get
 - Smaller set of value

Counting number occurrences of each word in a large collection of documents

```java
map (String key, String value)
    //key: document name
    //value: document contents

    for each word $w$ in value
        EmitIntermediate($w$, "1")
```

February 26, 2019
Professor: SHRIDEEP PALLICKARA

CS455: Introduction to Distributed Systems [Spring 2019]
Dept. Of Computer Science, Colorado State University
Counting number occurrences of each word in a large collection of documents

```java
reduce (String key, Iterator values)
    //key: a word
    //value: a list of counts

    int result = 0;
    for each v in values
        result += ParseInt(v);
    Emit(AsString(result));
```

Sums together all counts emitted for a particular word

MapReduce specification object contains

- Names of
 - Input
 - Output
- Tuning parameters
Map and reduce functions have associated types drawn from different domains

\[
\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2)
\]

\[
\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)
\]

What’s passed to-and-from user-defined functions?

- Strings
 - User code converts between
 - String
 - Appropriate types
The contents of this slide set are based on the following references:

- Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150