CS 455: Introduction to Distributed Systems

[MapReduce]

To Orchestrate a Job in a Cluster

A job comprises many a task
What could be so hard, you ask?
A job’s done, when *every* task wraps up
Deal you must, with *every* hiccup
Machines may slowdown or go bust
For *no* reason nor rhyme
Try to complete, you must
All tasks, at *roughly* the same time

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey

- Mutex, semaphore, locks, and latches
 - Mutex: kernel object for synchronizing across processes
 - Semaphore: Limits the number (between 0 and some max value) of threads accessing a shared resource
 - Locks: Used by threads to control access to shared, mutable state
 - Latches: Wait for a certain number of events to occur
 - Monitor: Object designed to be accessed concurrently from multiple threads

- Shared-Nothing Architecture

- Are machines donating cycles to each other in MapReduce?
Topics covered in this lecture

- Map Reduce

MAPREDUCE

MATERIALS BASED ON

JEFFREY DEAN and SANJAY GHEMAWAT: MapReduce: Simplified
Data Processing on Large Clusters. OSDI 2004: 137-150
Programming model

- Computation takes a set of **input** key/value pairs
- Produces a set of **output** key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

Map

- Takes an input pair
- Produces a set of intermediate key/value pairs
Mappers

- If map operations are **independent** of each other they can be performed in parallel
 - **Shared nothing**

- This is usually the case

MapReduce library

- **Groups** all intermediate values with the same intermediate key
- **Passes** them to the Reduce function
Reduce function

- Accepts intermediate key I and set of values for that key
- Merge these values together to get smaller set of value

Counting number occurrences of each word in a large collection of documents

```java
map (String key, String value)
    //key: document name
    //value: document contents

    for each word $w$ in value
        EmitIntermediate($w$, "1")
```

February 22, 2018
Instructor: SHRIDEEP PALLICKARA

CS455: Introduction to Distributed Systems [Spring 2018]
Dept. Of Computer Science, Colorado State University
Counting number occurrences of each word in a large collection of documents

```java
reduce (String key, Iterator values)
    //key: a word
    //value: a list of counts
    int result = 0;
    for each v in values
        result += parseInt(v);
    Emit(AsString(result));
```

Sums together all counts emitted for a particular word

MapReduce specification object contains

- Names of
 - Input
 - Output
- Tuning parameters
Map and reduce functions have associated types drawn from different domains

map(k1, v1) → list(k2, v2)
reduce(k2, list(v2)) → list(v2)

What’s passed to-and-from user-defined functions?

- Strings
- User code converts between
 - String
 - Appropriate types
Programs expressed as MapReduce computations: Distributed Grep

- **Map**
 - Emit line if it matches specified pattern

- **Reduce**
 - Just copy intermediate data to the output
 - The reducer here is an identity function
Counts of URL access frequency

- **Map**
 - Process logs of web page requests
 - Output `<URL, 1>`

- **Reduce**
 - Add together all values for a particular URL
 - Output `<URL, total count>`

Reverse Web-link Graph

- **Map**
 - Outputs `<target, source>` pair for each target URL found in page source

- **Reduce**
 - Concatenate list of all sources for a target URL
 - Output `<target, list(source)>`
Term-Vector per Host

- Summarizes important terms that occur in a set of documents `<word, frequency>`
- For each input document, the Map
 - Emits `<hostname, term vector>`
- Reduce function
 - Has all per-document vectors for a given host
 - Add term vectors; discard away infrequent terms
 - `<hostname, term vector>`

Inverted Index

- Map
 - Parse each document
 - Emit `<word, document ID>`
- Reduce
 - Accept all pairs for a given word
 - Sort document IDs
 - Emit `<word, list(document ID)>` pair
Implementation

- Machines are *commodity* machines
- GFS is used to manage data stored on the disks
Execution Overview – Part I

- Maps distributed across multiple machines
- Automatic partitioning of data into M splits
- Splits are processed **concurrently** on different machines

Execution Overview – Part II

- Partition **intermediate** key space into R pieces
- E.g. $\text{hash(key)} \mod R$
- User specified parameters
 - Partitioning function
 - Number of partitions (R)
Execution Overview

Execution Overview: Step I
The MapReduce library

- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines
Execution Overview: Step II
Program copies

- One of the copies is a Master
- There are M map tasks and R reduce tasks to assign
- Master
 - Picks *idle* workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III
Workers that are assigned a map task

- Read contents of their input split
- Parses *<key, value>* pairs out of the input data
- Pass each pair to user-defined *Map* function
- Intermediate *<key, value>* pairs from *Maps*
 - Buffered in Memory
Execution Overview: Step IV
Writing to disk

- Periodically, **buffered pairs** are written to disk
- These writes are partitioned
 - By the partitioning function
- **Locations** of buffered pairs on local disk
 - Reported to back to Master
 - Master forwards these locations to reduce workers

Execution Overview: Step V
Reading Intermediate data

- Master notifies **Reduce** worker about locations
- Reduce worker reads buffered data from the **local disks** of **Maps**
- Read all intermediate data; sort by intermediate key
 - All occurrences of the same key are grouped together
 - Many different keys map to the same **Reduce** task
Execution Overview: Step VI
Processing data at the Reduce worker

- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of intermediate values to Reduce function
- Output of the Reduce function is appended
 - To output file of the reduce partition

Execution Overview: Step VII
Waking up the user

- After all Map & Reduce tasks have been completed
- Control returns to the user code
Master Data Structures

- For each Map and Reduce task
 - **State**: \{idle, in-progress, completed\}
 - Worker **machine** identity

- For each completed Map task store
 - **Location** and **sizes** of R intermediate file regions

- Information pushed incrementally to in-progress Reduce tasks
Worker failures

- Master pings worker periodically
- After a certain number of failed pings
 - Master marks worker as having failed
- Any Map task completed by failed worker?
 - Reset to initial idle state
 - Eligible for rescheduling

Why completed Map tasks are reexecuted

- Output is stored on local disk of failed machine
 - Inaccessible
- All reduce workers are notified about reexecution
- Reduce tasks do not need to be reexecuted
 - Output stored in GFS
Master Failures

- Could **checkpoint** at the Master
 - Data structures are well-defined

- However, since there is only one Master
 - Assumption is that failure is unlikely

- If there is a Master failure?
 - MapReduce computation is **aborted**!
 - Client must **check and retry** MapReduce operation

Semantics in the presence of failures:
If map and reduce operators are deterministic

- Distributed execution output is identical to
 - Non-faulting, sequential execution

- Atomic commits of map and reduce task outputs help achieve this
Each in-progress task writes output to private temporary files

- Map task produces \(R \) such files
 - When task completes, Map sends this info to the Master

- Reduce task produces one such file
 - When reduce completes, worker **atomically**:
 - Renames temporary file to final output file
 - Uses GFS to do this

Locality

- **Conserve** network bandwidth
- Input files managed by GFS
- MapReduce master takes **location** of input files into account
- Schedule task on machine that contains a **replica** of the input slice
Locality and its impact when running large MapReduce tasks

- Most input data is read **locally**
- Consumes no network bandwidth

Task Granularity
Task Granularity

- Subdivide map phase into M pieces
- Subdivide reduce phase into R pieces
- $M, R >>$ number of worker machines
- Each worker performing many different tasks:
 - Improves dynamic load balancing
 - Speeds up recovery during failures

Practical bounds on how large M and R can be

- Master must make $O(M + R)$ scheduling decisions
- Keep $O(MR)$ state in memory
Practical bounds on how large M and R can be

- M is chosen such that
 - Input data is roughly 16 MB to 64 MB

- R constrained by users
 - Output of each reduce is in a separate file

- R is a *small multiple* of the number of machines that will be used

Typical values used at Google

- $M = 200,000$
- $R = 5,000$
- $W = 2,000$ worker machines
Stragglers

- Machine that takes an unusually long time to complete a map or reduce operation
- Can slow down entire computation
How stragglers arise

- **Machine with a bad disk**
 - Frequent, correctable errors
 - Read performance drops from 30 MB/s to 1 MB/s

- **Over scheduling**
 - Many tasks executing on the same machine
 - *Competition* for CPU, memory, disk or network cycles

- **Bug** in machine initialization code
 - Processor caches may be disabled

Alleviating the problem of stragglers

- **When a MapReduce operation is** *close to completion*

- **Schedule** backup executions of *remaining* in-progress tasks

- **Task completed when**
 - Primary or backup finishes execution

- **Significantly reduces time to complete large MapReduce operations**
The contents of this slide set are based on the following references

- Jeffrey Dean, Sanjay Ghemawat: *MapReduce: Simplified Data Processing on Large Clusters*. OSDI 2004: 137-150