Frequently asked questions from the previous class survey

- Is `distcp` across different clusters possible?
- For what application would `sync` be slow?
- Write pipeline: D1, D2, and D3 ... what if D2 fails?
- Uncompress and then MapReduce?
- How slow is slow?
Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts
 - Resilient Distributed Datasets

HDFS WRAP-UP
HDFS does not split gzip files

- Single map will process 16 HDFS blocks
- Most of these blocks will not be local to the map
 - Loss of locality
 - Job is not granular … takes much longer to run

The same story plays out if you were dealing with LZO files, but …

- It is possible to preprocess LZO files using an indexer tool
- Build an **index** of split points
Bzip2

- This does provide a synchronization marker between blocks
 - 48-bit approximation of pi

- The marker is used to support splitting

Dealing with large, unbounded files [Log files]

1. Store the files uncompressed
2. Use compression format that supports
 - Splitting: Bzip2
 - Indexing to support splitting: LZO
3. Split the file into chunks in the application and compress each chunk separately
 - Choose chunk sizes such that the compressed chunks are approximately the size of an HDFS block
Using compression in MapReduce

- To compress the output of MapReduce job
 - In the job config set `mapred.output.compress` property to true
 - Use `mapred.output.compression.codec` to specify the codec
- Alternatively, we can do this using the `FileOutputFormat`

Using the `FileOutputFormat`

```java
class MaxTemperatureWithCompression {
    public static void main(String[] args) throws Exception {
        Job job = Job.getInstance();
        job.setJarByClass(MaxTemperature.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileOutputFormat.setCompressOutput(job, true);
        FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
        job.setMapperClass(MaxTemperatureMapper.class);
        job.setCombinerClass(MaxTemperatureReducer.class);
        job.setReducerClass(MaxTemperatureReducer.class);
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
```
Main reason why Hadoop does not use Java Serialization

- Deserialization creates new instance of each object being deserialized
- Writable objects can be (and are often) reused
- Large MapReduce jobs often serialize/deserialize billions of records
 - Savings from not having to allocate new objects is significant
As distributed data analytics have grown common …

- Practitioners have sought easier tools for the task
- Apache Spark has emerged as one of the most popular
 - Extending and generalizing MapReduce

Spark: What is it?

- **Cluster computing platform**
 - Designed to be fast and general purpose
- **Speed**
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing
- **Why is speed important?**
 - Difference between waiting for hours versus exploring data interactively
Spark: Influences and Innovations

- Spark has inherited parts of its API, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ
- Spark’s internals, especially how it handles failures, differ from many traditional systems
- Spark’s ability to leverage **lazy evaluation** within memory computations makes it particularly unique

Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are **generalizable**
- On its own, Spark is **not** a data storage solution
 - Performs computations on Spark JVMs that last only for the duration of a Spark application
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - To house the data processed with Spark
 - A cluster manager — to orchestrate the distribution of Spark applications across the cluster
Key enabling idea in Spark

- **Memory resident data**

- Spark loads data into the memory of worker nodes
 - Processing is performed on memory-resident data

A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>time</th>
<th>Scaled time in human terms (2 billion times slower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 ns (2 GHz)</td>
<td>1 second</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 ns (1 GHz)</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>70 ns</td>
<td>140 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 ns (5 μs)</td>
<td>167 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 ns (7 ms)</td>
<td>162 days</td>
</tr>
<tr>
<td>Quantum</td>
<td>100,000,000 ns (100 ms)</td>
<td>6.3 years</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing

This has previously required multiple, independent tools

APIs

- Java, Python, Scala, and SQL
- Integrates well with other tools
 - Can run in Hadoop clusters
 - Access Hadoop data sources, including Cassandra
At its core, Spark is a computational engine

- Spark is responsible for several aspects of applications that comprise
 - Many tasks across many machines (compute clusters)
- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring

THE SPARK SOFTWARE STACK
The Spark stack

Spark SQL
structured data

Spark Streaming
real-time

Mlib & ML
machine learning

GraphX
Graph processing

Spark Core

Standalone Scheduler

YARN

Mesos

Benefits of tight integration [1/2]

- All libraries and higher-level components benefit from improvements at the lower layers

- E.g.: Spark’s core engine adds optimization? SQL and ML libraries automatically speed-up as well
Benefits of tight integration [2/2]

- Biggest advantage is ability to build applications that **seamlessly combine different processing models**

- An application may use ML to classify data in real time as it is being ingested
 - Analysts can query this resulting data, also in real time, via SQL (e.g.: join data with unstructured log-files)

Spark Core

- **Basic functionality** of Spark
 - Task scheduling, memory management, fault recovery, and interacting with storage systems
 - Also, the API that defines Resilient Distributed Datasets (RDDs)
 - Spark’s **main programming abstraction**
 - Represents collection of data items dispersed across many compute nodes
 - Can be manipulated concurrently (parallel)
Spark SQL

- Package for working with **structured data**
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python

Semi-structured data and Spark SQL

- Spark SQL defines an interface for a semi-structured data type, called **DataFrames**
 - And as of Spark 1.6, a semi-structured, typed version of RDDs called **Datasets**
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL.
Spark Streaming

- Enables processing of live streams of data from sources such as:
 - Logfiles generated by production web servers
 - Messages containing web service status updates

- Uses the scheduling of the Spark Core for streaming analytics on minibatches of data

- Has a number of unique considerations, such as the window sizes used for batches

MLib

- Library that contains common machine learning functionality
- Algorithms include:
 - Classification, regression, clustering, and collaborative filtering
- Low-level primitives
 - Generic gradient descent optimization algorithm
- Alternatives?
 - Mahout, sci–kit learn, VW, WEKA, and R among others
What about Spark ML?

- Still in the early stages, and has only existed since Spark 1.2
- Spark ML provides a higher-level API than MLlib
 - Goal is to allow users to more easily create practical machine learning pipelines
 - Spark MLlib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
- Eventually the Spark community plans to move over to ML and deprecate MLlib

Graph X

- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge
Cluster Managers

- Spark runs over a variety of cluster managers
 - These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark

Storage Layers for Spark

- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.
Spark Shells

- Interactive [Python and Scala]
 - Similar to shells like Bash or Windows command prompt
- Ad hoc data analysis
- Traditional shells manipulate data using disk and memory on a single machine
 - Spark shells allow interaction with data that is distributed across many machines
 - Spark manages complexity of distributing processing
Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are *not actually* Java

- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: **Scala** and **Clojure**

Scala

- Has spent most of its life as an academic language
 - Still largely developed at universities
 - Has a rich standard library that has made it appealing to developers of high-performance server applications

- Like Java, Scala is a strongly typed object-oriented language
 - Includes many features from functional programming languages that are not in standard Java
 - Interestingly, Java 8 incorporate several of the more useful features of Scala and other functional languages.
What is functional programming?

- When a method is compiled by Java, it is converted to instructions called byte code and ...
 - Then largely disappears from the Java environment
 - Except when it is called by other methods
- In a functional language, **functions are treated the same way as data**
 - Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions

What about Clojure?

- Based on Lisp
- Javascript?
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java
Core Spark Concepts

- Drivers
- SparkContext
- Executors
Spark in a nutshell

- Spark allows users to write a program for the **driver** (or master node) on a cluster computing system that can perform **operations** on data in parallel.
- Spark represents large datasets as **RDDs** which are stored in the executors (or worker nodes).
- The objects that comprise RDDs are called **partitions** and may be (but do not need to be) computed on different nodes of a distributed system.
- The Spark cluster manager handles starting and distributing the Spark executors across a distributed system.

Drivers

- Every Spark application consists of a **driver** program.
- Driver **launches various parallel operations** on the cluster.
- Constituent elements:
 - Application’s main function
 - Defines distributed datasets on the clusters
 - Applies operations to these datasets
SparkContext

- Driver programs access Spark through a SparkContext object
 - Represents a connection to a computing cluster
- Within the shell?
 - Created as the variable `sc`
 - You can event print out `sc` to see the type
- Once you have a SparkContext, you can use it to build RDDs
 - And then run operations on the data …

Executors

- Driver programs manage a number of nodes, called executors
- Executors are responsible for running operations
- For example:
 - If we were running a `count()` operation on cluster
 - Different machines might count lines in different ranges of the file
Components for distributed execution in Spark

```
def hasPython(line):
    return "Python" in line

pythonLines =
    lines.filter(hasPython)
```

Lot of Spark's API revolves around passing functions to its operators

```
def hasPython(line):
    return "Python" in line

pythonLines =
    lines.filter(hasPython)
```

Also known as the `lambda` or `=>` syntax
Lot of Spark’s API revolves around passing functions to its operators

```java
JavaRDD<String> pythonLines = lines.filter(
    new Function<String, Boolean>() {
        Boolean call(String line) {
            return line.contains("Python");
        }
    }
);

JavaRDD<String> pythonLines = 
    lines.filter(line -> line.contains("Python"));
```

RESILIENT DISTRIBUTED DATASET [RDD]
Resilient Distributed Dataset (RDD)

- RDD is an **immutable distributed collection** of objects
- Each RDD is split into **multiple partitions**
 - Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes

Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```
Once created, RDDs offer two types of operations

- **Transformations**
 - Construct a new RDD from a previous one
 - E.g.: Filtering data that matches a predicate

- **Actions**
 - Compute a result based on an RDD
 - Return result to the driver program or save it in external storage system (HDFS)

Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a **lazy fashion**
 - When?
 - The first time they are used in an action

- Loading lazily allows transformations to be performed **before** the action
Lazy loading allows Spark to see the whole chain of transformations

- Allows it to **compute just the data needed** for the result
- Example:

  ```python
  lines = sc.textFile("README.md")
  pythonLines = lines.filter(lambda line: "Python" in line)
  ```

- If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

RDD and actions

- RDDs are **recomputed** (by default) every time you run an action on them
- If you wanted to **reuse** an RDD?
 - Ask Spark to **persist** it using `RDD.persist()`
 - After computing it the first time, Spark will store RDD contents in memory (**partitioned** across cluster machines)
 - Persisted RDD is used in future actions
Every Spark program and shell works as follows

1. **Create** some input RDD from external data
2. **Transform** them to define new RDDs using transformations like `filter()`
3. Ask Spark to **persist()** any intermediate RDDs that needs to be reused
4. **Launch actions** such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark

The contents of this slide-set are based on the following references

- *Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data*. Byron Ellis. Wiley. [Chapter 2]