Frequently asked questions from the previous class survey

- 48-bit bookending in Bzip2: does the number have to be “special”?
- Spark seems to have “too many” features/extension libraries??
 - Good or bad
- Code inspection?
Topics covered in this lecture

- Resilient Distributed Datasets
- Common Transformations and Actions
Lazy loading allows Spark to see the whole chain of transformations

- Allows it to **compute just the data needed** for the result
- Example:
  ```python
  lines = sc.textFile("README.md")
  pythonLines= lines.filter(lambda line: "Python" in line)
  ```
- If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

RDD and actions

- RDDs are **recomputed** (by default) every time you run an action on them
- If you wanted to **reuse** an RDD?
 - Ask Spark to **persist** it using `RDD.persist()`
 - After computing it the first time, Spark will store RDD contents in memory (**partitioned** across cluster machines)
 - Persisted RDD is used in future actions
RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in repeated computations.
- RDDs are immutable, so transforming an RDD returns a new RDD rather than the existing one.
- Cross-cutting implications?
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient.

Every Spark program and shell works as follows

① **Create** some input RDD from external data

② **Transform** them to define new RDDs using transformations like `filter()`

③ Ask Spark to **persist()** any intermediate RDDs that needs to be reused

④ **Launch actions** such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark
A CLOSER LOOK AT RDD OPERATIONS

 RDDs support two types of operations

- **Transformations**
 - Operations that return a new RDD. E.g.: `filter()`

- **Actions**
 - Operations that return a result to the driver program or write to storage
 - Kicks of a computation. E.g.: `count()`

- **Distinguishing aspect?**
 - Transformations return RDDs
 - Actions return some other data type
Transformations

- Many transformations are **element-wise**
 - Work on only one element at a time

- Some transformations are not element-wise
 - E.g.: We have a logfile, `log.txt`, with several messages, but we only want to select error messages
    ```python
    inputRDD = sc.textFile("log.txt")
    errorsRDD = inputRDD.filter(lambda x: "error" in x)
    ```

In our previous example ...

- `filter` **does not mutate** `inputRDD`
 - Returns a pointer to an entirely new RDD
 - `inputRDD` can still be reused later in the program

- We could use `inputRDD` to search for lines with the word “warning”
 - While we are at it, we will use another transformation, `union()`, to print number of lines that contained either
    ```python
    errorsRDD = inputRDD.filter(lambda x: "error" in x)
    warningsRDD = inputRDD.filter(lambda x: "warning" in x)
    badlinesRDD = errorsRDD.union(warningsRDD)
    ```
In our previous example

- Note how `union()` is different from `filter()`
 - Operates on 2 RDDs instead of one
- Transformations can actually operate on any number of RDDs

RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
 - Lineage graph
- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

March 27, 2018
RDD lineage graph for our example

- inputRDD
 - filter
 - errorsRDD
 - filter
 - warningsRDD
 - union
 - badLinesRDD

Actions

- We can create RDDs from each other using transformations
- At some point, we need to actually **do something** with the dataset
 - Actions
- Forces **evaluations of the transformations** required for the RDD they were called on
Let's try to print information about badlinesRDD

```scala
print “Input had “ + badLinesRDD.count() + “concerning lines”
print “here are 10 examples:”
for line in badLinesRDD.take(10)
  print line
```

RDDs also have a `collect` to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use `collect()` on it
 - Should NOT be used on large datasets
- In most cases, RDDs **cannot be** `collect()`ed to the driver
 - Common to write data out to a distributed storage system ... HDFS or S3
Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will not begin to execute until it sees an action

- Uses this to **reduce the number of passes** it has to take over data by grouping operations together

- What does this mean?
 - When you call a transformation on an RDD (for e.g. map) the operation is not immediately performed
 - Spark internally records metadata that operation is requested

How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as **containing instructions on how to compute the data** that we build through transformations

- Loading data into a RDD is lazily evaluated just as transformations are
COMMON TRANSFORMATIONS AND ACTIONS

March 27, 2018

Element-wise transformations: filter()

- Takes in a function and returns an RDD that only has elements that pass the filter() function
Element-wise transformations: \texttt{map()} \\

- Takes in a function and applies it to each element in the RDD \\
- Result of the function is the new value of each element in the resulting RDD \\

\begin{itemize}
 \item inputRDD \{1,2,3,4\}
 \item map x => x*x
 \item filter x => x !=1
\end{itemize}

\begin{itemize}
 \item Mapped RDD \{1,4,9,16\}
 \item Filtered RDD \{2,3,4\}
\end{itemize}

Things that can be done with \texttt{map()} \\

- Fetch website associated with each URL in collection to just squaring numbers \\
- \texttt{map()}’s return type does not have to be the same as its input type \\
- Multiple output elements for each input element? \\
 - Use \texttt{flatMap()} \\
 \begin{verbatim}
 lines=sc.parallelize(["hello world", "hi"])
 words=lines.flatMap(lambda line: line.split(" "))
 words.first() # returns hello
 \end{verbatim}
Difference between map and flatMap

- RDD1.map(tokenize) generates a list of lists:

 \[
 \text{mappedRDD} = \{\{\text{"coffee"}, \text{"panda"}\}, \{\text{"happy"}, \text{"panda"}\}, \{\text{"happiest"}, \text{"panda"}, \text{"party"}\}\}
 \]

- RDD1.flatMap(tokenize) flattens the list of lists:

 \[
 \text{flatMappedRDD} = \{\text{"coffee"}, \text{"panda"}, \text{"happy"}, \text{"panda"}, \text{"happiest"}, \text{"panda"}, \text{"party"}\}
 \]

Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.

- Even when the RDDs themselves are not properly sets
Some simple set operations

<table>
<thead>
<tr>
<th>RDD1</th>
<th>RDD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>{coffee, coffee, panda, tiger, tea}</td>
<td>{coffee, tiger, snake}</td>
</tr>
<tr>
<td>RDD1.distinct()</td>
<td>RDD1.union(RDD2)</td>
</tr>
<tr>
<td>{coffee, tiger, panda, tea}</td>
<td>{coffee, coffee, panda, tiger, tiger, tea, snake}</td>
</tr>
<tr>
<td>RDD1.subtract(RDD2)</td>
<td>RDD1.intersection(RDD2)</td>
</tr>
<tr>
<td>{panda, tea}</td>
<td>{coffee, tiger}</td>
</tr>
</tbody>
</table>

Cartesian product between two RDDs

<table>
<thead>
<tr>
<th>RDD1</th>
<th>RDD1.cartesian(RDD2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{User1, User2, User3}</td>
<td>{ (User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")), (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")), (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual")) }</td>
</tr>
<tr>
<td>cartesian</td>
<td></td>
</tr>
</tbody>
</table>
Common Actions

March 27, 2018

CS455: Introduction to Distributed Systems [Spring 2018]
Dept. Of Computer Science, Colorado State University

Actions on Basic RDDs

- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? + sums the RDD

```scala
sum = rdd.reduce((x,y) => x + y)
```

- **fold()** takes a function with the same signature as `reduce()`, but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation
Both `fold()` and `reduce()` require return type of same type as the RDD elements

- The `aggregate()` removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements
Examples: Basic actions on RDDs [1/7]

- Our RDD contains \{1, 2, 3, 3\}

- \texttt{collect()}
 - Return all elements from the RDD
 - Invocation: \texttt{rdd.collect()}
 - Result: \{1, 2, 3, 3\}

Examples: Basic actions on RDDs [2/7]

- Our RDD contains \{1, 2, 3, 3\}

- \texttt{count()}
 - Number of elements in the RDD
 - Invocation: \texttt{rdd.count()}
 - Result: 4
Examples: Basic actions on RDDs [3/7]

- Our RDD contains \{1, 2, 3, 3\}

- `countByValue()`
 - Number of times each element occurs in the RDD
 - **Invocation:** `rdd.countByValue()`
 - **Result:** \{(1,1), (2,1), (3,2)\}

Examples: Basic actions on RDDs [4/7]

- Our RDD contains \{1, 2, 3, 3\}

- `take(num)`
 - Return `num` elements from the RDD
 - **Invocation:** `rdd.take(2)`
 - **Result:** \{1, 2\}
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}

- **reduce** (**func**)
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x, y) => x + y)`
 - Result: 9

- Our RDD contains \{1, 2, 3, 3\}

- **aggregate** (**zeroValue**) (**seqOp**, **combOp**)
 - Similar to `reduce()` but used to return a different type
 - Invocation:
 - `rdd.aggregate((0,0))
 ((x,y) => (x._1 + y, x._2 + 1),
 (x,y) => (x._1 + y._1, x._2 + y._2))`
 - Result: \(9, 4\)
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}

- \textbf{foreach}\(\text{(func)}\)
 - Apply the provided function to each element of the RDD
 - Invocation: \texttt{rdd.foreach(func)}
 - Result: Nothing

Persistence (Caching)
Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
 - Naively, Spark will **recompute RDD and all of its dependencies** each time we call an action on the RDD
 - Super expensive for iterative algorithms
- To avoid recomputing RDD multiple times?
 - Ask Spark to **persist** the data
 - The nodes that compute the RDD, store the partitions
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`

Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed
- Also, replicate data on multiple nodes
 - To handle node failures without slowdowns
Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

What if you attempt to cache too much data that does not fit in memory?

- Spark will **evict old partitions** using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk

- RDDs also come with a method, **unpersist()**
 - Manually remove data elements from the cache
WORKING WITH KEY/VALUE PAIRS

RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats

- Advanced feature to control layout of pair RDDs across nodes
 - Partitioning
RDDs containing key/value pairs

- Are called **pair RDDs**
- Useful **building block** in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - `reduceByKey()` to aggregate data separately for each key
 - `join()` to merge two RDDs together by grouping elements of the same key
Pair RDDs

- RDDs that contain **key/value pairs**
- Expose partitions that allow you to act on each key in parallel or regroup data across the network

Creating Pair RDDs

- `pairs=lines.map(lambda x: (x.split(" "))[0], x))`
 - Creates a pair RDD using the first word as the key
- Java does not have a built-in tuple type
 - `scala.Tuple2` class
 - `new Tuple2(elem1, elem2)`
The contents of this slide-set are based on the following references
