Frequently asked questions from the previous class survey

- Can Spark repartition a wide transformation into a narrow transformation?
- Why have a temperature range till 130?
- How do you know how much data movement is too much?
- Reduce operation in Spark: how are values added up?
- Does it make sense to write your own partitioner?
- Are there Spark programs that will take a long time (months/years) to complete?
Topics covered in this lecture

- Spark Streaming
 - Architecture and Abstractions
 - Execution
 - Stateful and stateless transformations
 - Windowed operations
 - Performance considerations
 - Example

Example

- Start by creating a `StreamingContext`
 - Main entry point for streaming functionality
 - Specify batch interval, specifying *how often* to process new data

- We will use `socketTextStream()` to create a DStream based on text data received over a port

- Transform DStream with filter to get lines that contain “error”
Example

```java
JavaStreamingContext jssc =
    new JavaStreamingContext(conf, Durations.seconds(1));

JavaDStream<String> lines =
    jssc.socketTextStream("localhost", 7777);

JavaDStream<String> errorLines =
    lines.filter(new Function<String, Boolean>() {
        public Boolean call(String line) {
            return line.contains("error");
        }
    });
```

Previous snippet only sets up the computation

- To start receiving the data?
 - Explicitly call `start()` on `StreamContext`

- `SparkStreaming` will start to schedule Spark jobs on the underlying `SparkContext`
 - Occurs in a `separate thread`

- To keep application from terminating?
 - Also call `awaitTermination()`

```java
jssc.start();
jssc.awaitTermination();
```
Spark Streaming Architecture

- Spark Streaming uses a **micro-batch** architecture
 - Streaming computation is treated as a **continuous series of batch computations** on small **batches** of data
- Receives data from various input sources and groups into small batches
- New batches are **created at regular intervals**
 - At the start of each time interval, a new **batch** is created
 - Any data arriving in that interval is added to the batch
 - Size of batch is controlled by the **batch interval**
High-level architecture of Spark Streaming

Input Data Streams → Spark Streaming → Batches of input data → Spark → Results pushed to external systems

DStream is a sequence of RDDs, where each RDD has one slice of data in stream

- Data from time 0 to 1
- Data from time 1 to 2
- Data from time 2 to 3
- Data from time 3 to 4
DStreams and the transformations in our example

DStreams support output operations, such as the `print()` used in our example.

- Output operations are similar to RDD actions in that they write data to an external system.
- But in Spark Streaming they *run periodically* on each time step, producing *output in batches*.
Spark Streaming: Execution

- For each input source, Spark Streaming launches receivers
 - Tasks running within the application’s executors that collect data from source and save as RDDs
 - Receives input data and replicates it (by default) to another executor for fault tolerance
 - Data is *stored in memory of the executors* in the same way that RDDs are cached

Spark Streaming: Execution

- `StreamingContext` in the driver program then periodically runs Spark jobs to:
 - Process this data and …
 - Combine it with RDDs from previous time steps
Spark Streaming: Execution

Spark Streaming: Fault Tolerance

- Spark Streaming offers the **same fault-tolerance** properties for DStreams as Spark has for RDDs
 - As long as a copy of the input data is still available, it can recompute any state derived from it using the lineage of the RDDs
 - By **rerunning the operations** used to process it
Spark Streaming: Fault Tolerance

- By default, data is replicated across two nodes
 - Can tolerate single worker failures
- Using lineage graphs to recompute any derived state? Impractical
- Spark Streaming relies on **checkpointing**
 - Saves state *periodically*
 - Checkpoint every 5-10 batches of data
 - When recovering, only go back to the last checkpoint

Spark Streaming: Transformations

- **Stateless** transformations
 - Each batch does not depend on data of its previous batches
- **Stateful** transformations
 - Use data or intermediate results from *previous batches* to compute results of the current batch
Stateless transformations are simple RDD transformations being applied on every batch — that is, every RDD in a DStream.

Many of the RDD transformations that we have looked at are also available on DStreams.
Examples of stateless transformations

- `map()`
 - Apply a function to each element in the DStream and return a DStream of the result
 - `ds.map(x => x + 1)`

- `flatMap()`
 - Apply a function to each element in the DStream and return a DStream of the contents of the iterators returned
 - `ds.flatMap(x => x.split(" "))`
Examples of stateless transformations

- **filter()**
 - Return a DStream consisting of only elements that pass the condition passed to filter
 - `ds.filter (x => x != 1)`

Examples of stateless transformations

- **repartition()**
 - Change the number of partitions of the DStream
 - Distributes the received batches across the specified number of machines in the cluster before processing
 - The physical manifestation of the DStream is different in this case
 - `ds.repartition(10)`
Examples of stateless transformations

- `reduceByKey()`
- Combine values with the same key in each batch
 - `ds.reduceByKey((x, y) => x + y)`

Examples of stateless transformations

- `groupByKey()`
- Group values with the same key in each batch
 - `ds.groupByKey()`
A note about stateless operations

- Although it may seem that they are being applied over the whole stream …
 - Each DStream has multiple RDDs (batches)
 - Stateless transformation applies *separately* to each RDD
 - E.g. `reduceByKey()` will reduce data for each timestep, but not across timesteps

Stateful Transformations
Stateful transformations

- Operations on DStreams that track data across time
 - Data from previous batches used to generate results for a new batch

- Two types of windowed operations
 - Act over sliding window of time periods
 - `updateStateByKey()` track state across events for each key

Stateful transformations and fault tolerance

- Requires checkpointing to be enabled in `StreamingContext` for fault tolerance

  ```scala
  ssc.checkpoint("hdfs:// ...");
  ```
Windowed Transformations

- Compute results across a longer time period than the batch interval
- Two parameters: window and sliding durations
 - Both must be a multiple of the batch interval
- Window duration controls how many previous batches of data are considered
 - \(\text{window Duration/batchInterval} \)
 - If the batch interval is 10 seconds and the sliding window is 30 seconds ...
 last 3 batches

A windowed stream:
Window duration (3) & slide duration (2)

Every 2 time steps, we compute a result over the previous 3 time steps
Simplest window operation on a DStream

- `window()`
- Returns new DStream with data from the requested window
- Each RDD in the DStream resulting from `window()`, will contain data from multiple batches

Other operations on top of `window()`

- `reduceByWindow` and `reduceByKeyAndWindow`
- Includes a special form that allows reduction to be performed incrementally
 - Considering only the data coming into the window and the data that is going out
 - Special form requires an \textit{inverse} of the reduce function
 - Such as – for +
 - More efficient for large windows if your function has an inverse
Difference between naïve and incremental reduceByWindow()

<table>
<thead>
<tr>
<th>Network Input</th>
<th>Naïve reduce by Window</th>
<th>Reduce by Window with +-</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1: (1, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t2: (4, 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t3: (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t4: (3)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>t5: (3, 1)</td>
<td>22</td>
<td>+</td>
</tr>
<tr>
<td>t6: (1)</td>
<td>17</td>
<td>+</td>
</tr>
</tbody>
</table>

Maintaining state across batches

- **updateStateByKey()**
 - Provides access to a state variable for DStreams of key/value pairs
 - Given a DStream of (key, event) pairs
 - Construct a new DStream of (key, state) pairs by taking a function that specifies how to update the state for each key, given new events
Performance considerations in Spark Streaming

April 3, 2018

- **Batch size**
 - **500 milliseconds** is considered a good minimum size
 - Start with a large batch size (~10 seconds) and work down to a smaller batch size
 - If processing times remain consistent, explore decreasing the batch size
 - If the processing times increase? You have reached the limit

- **Window size**
 - Has a great impact on performance
 - Consider increasing this for expensive operations
Garbage collections and memory usage

- Cache RDDs in serialized form
 - Using Kryo for serialization reduces this even more
 - Reduces space for in-memory representations
- By default, Spark uses an in-memory cache
 - Can also evict RDDs older than a certain time-period
 - spark.cleaner.ttl
 - This preemptive eviction of RDDs also reduces the garbage collection pressure

Levels of parallelism in data receiving

- Each input DStream creates a single receiver that receives a single stream of data
 - Receiving multiple data streams possible by creating multiple input DStreams
 - Each Dstream must be configured to receive different partitions of the data stream from the source(s)
- For a Kafka DStream receiving data on two topics?
 - Split into two DStreams each receiving one topic
 - Two receivers would run and receive data in parallel
Levels of parallelism in data receiving

- Another approach is to tune the receiver’s **block interval**
 - Determined by `spark.streaming.blockInterval`
- For most receivers, received data is **coalesced** into blocks of data before storing in memory
- The number of blocks in each batch determines the number of tasks used to process the received data in a map-like transformation
- Number of tasks per batch?
 - Batch interval/block interval

Levels of parallelism in data receiving

- Number of tasks per batch?
 - Batch interval/block interval
- Block interval of 200 ms will create 10 tasks per 2 second batches
- If the number of tasks is too low?
 - All available cores might not be available to use all the data
- To increase number of tasks for a given batch interval?
 - Reduce the block interval
Levels of parallelism in data receiving

- What if you did not want to receive data with multiple input streams?
 - Explicitly **repartition** the input data stream

- **Repartitioning is done using the** `inputStream.repartition(<number of partitions>)`
 - Distributes the received batches of data across the specified number of machines in the cluster **before** further processing

Data serialization

- Data received through receivers is stored with `StorageLevel.MEMORY_AND_DISK_SER_2`
 - Data that does not fit in memory spills over to disk

- **Input data and persisted RDDs generated by DStream transformations are automatically cleared**
 - If you are using a window operation of 10 minutes, then Spark Streaming will keep around the last 10 minutes of data, and actively throw away older data
 - Data can be retained for a longer duration by setting `streamingContext.remember`
Data serialization

- RDDs generated by streaming computations may be persisted in memory
 - Persisted RDDs generated by streaming computations are persisted with StorageLevel.MEMORY_ONLY_SER
- If you are using batch intervals of a few seconds and no window operations?
 - You can try disabling serialization in persisted data
 - Reduce CPU overheads due to serialization, without excessive GC overheads.

PROCESSING Twitter STREAMS USING SPARK
Spark-streaming example [1/5]

- Step-by-step approach to finding the top 10 hashtags from a stream of tweets using counts [Every second there is an output over data from the last 300 seconds]
- Step-1: Create a SparkStream context and Twitter credential setup

```java
SparkConf sparkConf = new SparkConf().setAppName("Spark-streaming-twitter-trends");
/*
Twitter authentication details … [Not included here]
*/
//JavaStreamingContext
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(1000));
//Discretized stream of tweets
JavaDStream<Status> twitterStream = (JavaDStream<Status>) TwitterUtils.createStream(jssc);
```

Spark-streaming example [2/5]

- Step-2: Map Input DStream of Status to String

```java
//Discretized stream of Strings
JavaDStream<String> statuses = twitterStream.map(
    new Function<Status, String>() {
        public String call(Status status) {
            return status.getText();
        }
    });
statuses.print();
//trigger the execution of code
jssc.start();
jssc.awaitTermination();
```
Spark-streaming example [3/5]

- **Step-3: Stream of hashtags from stream of tweets**

  ```java
  // Tokeinize words from statuses
  JavaDStream<String> wordsFromStatuses = statuses.flatMap(
      new FlatMapFunction<String, String>() {
        public Iterable<String> call(String input) {
          return Arrays.asList(input.split(" "));
        }
      });

  // Extract hashtags
  JavaDStream<String> hashTags = wordsFromStatuses.filter(
      new Function<String, Boolean>() {
        public Boolean call(String word) {
          return word.startsWith("#" ignoreCase);
        }
      });
  ```

Spark-streaming example [4/5]

- **Step-4: Count the hashtag over 5 min window**

  ```java
  // Mapping to tuple of (hashtag,1) in order to count
  JavaPairDStream<String, Integer> hashtagTuples = hashTags.mapToPair(
      new PairFunction<String, String, Integer>() {
        public Tuple2<String, Integer> call(String input) {
          return new Tuple2<String, Integer>(input, 1);
        }
      });

  // Aggregating over window of 5 min and slide of 1s
  JavaPairDStream<String, Integer> counts = hashtagTuples.reduceByKeyAndWindow(
      new Function2<Integer, Integer, Integer>() {
        public Integer call(Integer int1, Integer int2) {
          return int1 + int2;
        }
      },
      new Function2<Integer, Integer, Integer>() {
        public Integer call(Integer int1, Integer int2) {
          return int1 - int2;
        }
      },
      new Duration(60 * 5 * 1000), new Duration(1 * 1000));
  ```
Spark-streaming example

- Step-5: Find top 10 hashtags according to counts

```java
JavaPairDStream<Integer, String> swapCounts = counts.mapToPair(
    new PairFunction<Tuple2<String, Integer>, Integer, String>() {
        public Tuple2<Integer, String> call(Tuple2<String, Integer> input) {
            return input.swap();
        }
    });
JavaPairDStream<Integer, String> sortedCount = swapCounts.transformToPair(
    new Function<JavaPairRDD<Integer, String>, JavaPairRDD<Integer, String>>() {
        public JavaPairRDD<Integer, String> call(JavaPairRDD<Integer, String> input) {
            return input.sortByKey(false);
        }
    });
sortedCount.foreach(new Function<JavaPairRDD<Integer, String>, Void>() {
    public Void call(JavaPairRDD<Integer, String> rdd) {
        String out = "Trending hashtags:
        for (Tuple2<Integer, String> t: rdd.take(10)) {
            out = out + t.toString() + "\n";
        }
        System.out.println(out);
        return null;
    }
});
```

The contents of this slide-set are based on the following references