Cost and Optimality

- **Cost** = \(p \cdot T_p \)
 - \(p \): number of processors
 - \(T_p \): Time complexity for parallel execution
 - Also referred to as **processor-time product**
 - Time can take communication into account
 - Problem with mixing processing time and communication time
 - Simple but unrealistic:
 - operation: 1 time unit
 - communicate with direct neighbor: 1 time unit

- **Cost optimal** if Cost = \(O(T_1) \)
E.g. - Add n numbers on hypercube

- n numbers on n processor cube
 - Cost?, cost optimal?
 - assume 1 add = 1 time step
 - 1 comms = 1 time step
 - Assume the numbers are already distributed over the cube

- n numbers on p ($<n$) processor cube
 - Cost?, cost optimal? $S(n)$? $E(n)$?
 - Again, assume the numbers are already distributed over the cube
E.g. - Add \(n \) numbers on hypercube

- \(n \) numbers on \(n \) processor cube
 - Cost = \(O(n \cdot \log(n)) \), not cost optimal

- \(n \) numbers on \(p \) (<\(n \)) processor cube
 - \(T_p = \frac{n}{p} + 2 \cdot \log(p) \)
 - Cost = \(O(n + p \cdot \log(p)) \),
 cost optimal if \(n = O(p \cdot \log(p)) \)
 - \(S = \frac{n \cdot p}{n + 2 \cdot p \cdot \log(p)} \)
 - \(E = \frac{n}{n + 2 \cdot p \cdot \log(p)} \)
E.g. - Add n numbers on hypercube

- n numbers on p ($<n$) processor cube
 - $T_p = \frac{n}{p} + 2 \cdot \log(p)$
 - Cost = $O(n + p \cdot \log(p))$,
 cost optimal if $n = O(p \cdot \log(p))$
 - $S = \frac{n \cdot p}{n + 2 \cdot p \cdot \log(p)}$
 - $E = \frac{n}{n + 2 \cdot p \cdot \log(p)}$
- Build a table: E as function of n and p
 - Rows: $n = 64, 192, 512$ Cols: $p = 1, 4, 8, 16$
 - larger n \rightarrow higher E, larger p \rightarrow lower E
\[E = \frac{n}{n + 2p \log(p)} \]

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1</td>
<td>(\frac{64}{64+16} = \frac{4}{5})</td>
<td>(\frac{64}{64+48} = \frac{4}{7})</td>
<td>(\frac{64}{64+128} = \frac{1}{3})</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>(\frac{192}{192+16} = \frac{12}{13})</td>
<td>(\frac{192}{192+48} = \frac{4}{5})</td>
<td>(\frac{192}{192+128} = \frac{3}{5})</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>(\frac{512}{512+16} = \frac{32}{33})</td>
<td>(\frac{512}{512+48} = \frac{32}{35})</td>
<td>(\frac{512}{512+128} = \frac{4}{5})</td>
</tr>
</tbody>
</table>
Observations

- to keep $E=80\%$ when growing p, we need to grow n
 - larger $n \rightarrow$ larger E
 - larger $p \rightarrow$ smaller E
Scalability

- Ability to keep the efficiency fixed, when p is increasing, provided we also increase n

- e.g. Add n numbers on p processors (cont.)
 - Look at the (n,p) efficiency table
 - Efficiency is fixed (at 80%) with p increasing
 - only if n is increased
Efficiency is fixed (at 80%) with p increasing only if n is increased
How much?
$E = \frac{n}{n + 2p \log p} = \frac{4}{5}$
$4(n + 2p \log p) = 5n$
n = 8p \log p
(Check with the table)
Iso-efficiency metric

- Iso-efficiency of a scalable system
 - measures degree of scalability of parallel system
 - parallel system: algorithm + topology
 + compute / communication cost model

- Iso-efficiency of a system: the growth rate of problem size n, in terms of number of processors p, to keep efficiency fixed
 - eg $n = O(p \log p)$ for adding on a hypercube
Sources of Overhead

- Communication
 - PE - PE
 - PE – memory
 - And the busy waiting associated with this

- Load imbalance
 - Synchronization causes **idle processors**
 - Program parallelism does not match machine parallelism all the time
 - Sequential components in computation

- Extra work
 - To achieve independence (avoid communication), parallel algorithms sometimes re-compute values