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Abstract

Data Decomposition involves the mapping of array

to processors of a Distributed Memory Machine
goal to obtain the best possible performance of a

elements

with the

program

by keeping communication costs-low while exploiting ‘par-

allelism. Data decomposition is typically divided into two
subproblems: alignment and partitioning. Alignment deals
with the relative allocation of different arrays. Partitioning
is concerned with the actual distribution of the array ele-
ments among processors. Conflicting alignments may cause
communication. This paper presents a technique for reduc-

ing communication by honoring multiple alignments and ap-

plies this approach in a distributed memory implementation

of the strict functional language Sisal. .Multiple alignment

leads to recomputation and replication of array elements,

which is safe in a functional, and hence side effect free, set-
ting. We present performance improvements of up to 80~o

for one dimensional arrays, and up to 50% for two dimen-
sion al arrays, compared to single alignment implementations
on a cluster of workstations.

1 Introduction

Data decomposition involves the mapping of array elements
to processors of a Distributed Memory Machine. Some re-

search groups have concentrated on language extensions to

guide the data decomposition [4, 9, 1I]. A more transpar-

ent approach is sought by researchers that are trying to de-

rive the data decomposition automatically during a special-

ized analysis phase of the compiler based on information

extracted from the source code [5, 6, 13, 23, 27]. Regard-

less of the method used to derive the decomposition, the

problem is typically approached in two phases: alignment

and partit$onzng. The goal of alignment is to reduce com-

munication due to inter--array references, references among

different arrays. Alignment involves the relative allocation

of arrays by mapping elements of different arrays to a com-

mon virtual array known as a template, which is a Cartesian

grid of sufficiently high dimensionality and size.
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When a computation requires elements mapped to the

same template point, no communication will occur. Align-

ment is machine independent. For simplicity we will assume

that one of the arrays of the program represents the tem-

plate. We wilf identify this array as the target array. We

will call the array that is being aligned with the target array

the alignee.

Data partitioning is concerned with the distribution of

the target array over processors. The issue is how to dis-

tribute the data while minimizing communication, maximiz-

ing parallelism, and balancing workload. Data partitioning

is a more machine dependent problem since it is related to

the machine architecture [I].

Since alignment is a machine independent problem and

partitioning a more machine dependent problem, most of

the data decomposition approaches perform alignment first

followed by partitioning.

There are situations where conflicting alignments exist,

e.g., in A [i]= B [1] + B [i+5] the reference B [i] requires
B [i] and A [i] to be aligned, whereas B [i-+5] requires

B [i+5] and A [i] to be ahgned. Most approaches to cope

with conflicting alignments select one of the multiple align-

ments to be honored while leaving the remaining references

unhonored with the consequence that. depending on the par-

titioning scheme, unaligned references can lead to communi-

cation. The goaf of this paper is to present an alternative ap-

proach that reduces communication by multiple alignment.

Functional languages provide and implicitly parallel, de-

terministic, and machine-independent programming para-

digm. We are interested in data decomposition techniques

that can be applied to monolithic strict single assignment

arrays found in languages such as SISAL [24]. Monolithic

arrays are created in one syntactic construct. The opera-

tion A = ink-array (n, f ) creates an array A of size n where
each of it’s elements i, is defined as A[z] = f(i) where f is

any function defined in the program [16, 31]. In Sisal this is

written as:

for i in l,n

returns array of f (i)

end for

Strict arrays must be completely defined ‘before any of

the arrav elements can be used. On the other hand. lan-.
guages that use non-strict arrays allow that not all of the ar-

ray needs to be defined before elements can be used. Mono-

lithic, strict, single assignment arrays have two important

characteristics:

● NO Intra-array references. Elements of a strict array

cannot be defined in terms of other elements of the
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same array. Since the array definition is free of intra-
array references, data decomposition is concerned with
reducing communication due to inter-array references.
Therefore unaligned references become the only source
of communication.

● Safe Replication via Recomputation. Since every array

element is defined just once during the lifetime of the

program and the functional language guarantees side-

effect freeness, it is safe to compute the same array ele-

ment in more than one processor. This is what we call

recomputation. Because of the single assignment rule,

coherence among distributed copies of array elements

is guaranteed. Also, it is very easy to identify the pro-

cess in the program that defines a particular element of

a monolithic array. Replication of data, having an ar-

ray element available in more than one processor, can

thus be realized by either communication or recompu-

tation. This allows us to trade off communication and

recomputation.

The rest of the paper is structured as follows. Section

two discusses the cluster of workstations we use in our ex-

periments, and the timing behavior of passing messages of

certain sizes between processors in such a cluster. Section

three introduces multiple alignment in the static case and in

loops. Examples of both a one-dimensional problem and a

two-dimensional problem are treated in detail. Section four

discusses related work, and section five provides conclusions

and future work.

2 Message Passing in a Cluster of Workstations

We will measure the behavior of the C plus message pass-

ing target code of the Distributed Memory Sisal compiler

that we are implementing. We will compare programs us-

ing single alignment to those employing multiple alignment.

Multiple array elements to be sent from one processor to

another are always grouped together in one message. Our

experiments were done using up to 16 HP/9000 series 400

workstations interconnected via Ethernet. These worksta-

tions were not isolated during our tests. However, we ran

the experiments during low traffic hours. The running times

are all reported in seconds and represent the average CPU

time of 5 runs.

In any Distributed Memory Machine, there is a message

startup time and a message transfer time. The message

transfer time depends on the length of the message being

transferred. The startup time is several orders of magnitude

higher than the transfer time for a small message. It is this

phenomenon that we are trying to exploit when decreasing

the number of messages and increasing their size.

The message passing library used is MPI [10]. We are ex-

perimenting with two implementations of MPI: MPICH [12]

and MPI-LAM [3]. Fig. 1 shows the timing behavior of the

two MPI implementations on the cluster of HP400 worksta-

tions. It gives the time it takes to exchange 100 messages

of a certain message size, measured in floats, between two

workstations. We can see that the message startup time

for M PICH is about four milliseconds and for MPI-LAM

about twelve milliseconds. To exchange a message of 120

floats takes about half a millisecond in transfer time. In

general, MPICH is much faster than MPI-LAM. MPICH

behaves non-linearly: messages of size less than 256 floats

are exchanged faster than larger messages. This is because

MPICH employs different algorithms for small and large
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Figure 1: Message Exchange Times for 100 Messages in

MPICH and MPI-LAM

messages [26]. When using MPICH it is therefore not prof-

itable to exchange messages that are larger, but not much

larger, than 256 floats. The consequences of this will become

clear when we analyse the results of our experiments.

3 Honoring Multiple Conflicting Alignments

In the sequel, when we talk about arrays we will be refer-

ring to monolithic, strict, functional arrays. Decomposition

concentrates on reducing costs due to unahgned references.

We will investigate the effect of honoring multiple conflicting

alignments by replication via recomputation. We call this

approach Mzdtzpk Alignment. Two conditions determine the

profitability of multiple alignment:

●

b

Recomputation us Comrnuntcation costs. The cost of

recomputation of the replicated data elements in mul-

tiple alignment implementations should be less that

the cost of communicating the same data elements in

the single alignment implementation. This is a ma-

chine and program dependent issue.

Memory availability. There should be enough memory

available on each processor to allow for the replication

of data elements. The memory requirements of the

multiple alignment implementation is program depen-

dent. Often only a small fraction of the memory is

needed for replication.

Parallelizing compilers for Distributed Memory Machines

typically have a code generation phase that uses data decom-

position information to generate the node program for the

processors of a distributed memory machine [15]. We as-

sume that the code is generated for SPMD (Single Program

Multiple Data) execution model[17] and the code follows the

owner computes rule for the target array. However, the rule

is relaxed since several processors can be the owners of the

same data element. Code generation to support multiple

alignment will be different from single alignment: arrays are

divided over processors in overlapping chunks or parts, and

loop bounds in various processors overlap.
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Our methods for obtaining the local index sets and gen-

eration of local computations are based on techniques de-

scribed in [14]. The local index set is defined as the set of

indices of all those elements of an array that reside in pro-

cessor p. Data distribution defines a distribution function

that maps array elements to processors. The distribution

function is used to obtain the local index set. The local com-

putation is obtained by applying the inverse array subscript

function to the local index set, giving rise to the local loop

bounds. Given the appropriate decomposition information,

such as the target array, the references that require multiple

alignment and the partitioning scheme of the target array,

the following summarizes the code generation strategy.

● Compute the local index set of the target array.

● Compute the local index set of the alignee based on

the references that require multiple alignment.

● C,enerate the local loop bounds from the locaI index

set of the target array.

● C,enerate the local access patterns into alignee array

based on its local index set.

The simplest case of alignment occurs for statically named

arrays, i.e. arrays that are not redefined in loops. An ex-

ample is Livermore Loop #1, which performs the following

computation:

X,= Q+(X*(R *Z,+, O+ T* Z’,+ll))

Although this is a very simple example, reference pat-

terns similar to this occur frequently in the Livermore Loops

Benchmark Suite [8]. Single alignment will align X, with Y,

and with one of the two references of Z, Z,YIO or Z?+ll.

When the arrays are equally partitioned over p processors,

either of the two alignments will give rise to one exchange

per processor. In this simple case, by multiple alignment all

communication can be avoided.

In the more general case, arrays are redefined in loops,

and not all communication can be avoided. In a functional

program, multiple versions of an array or scalar can be

defined in a loop construct, as in the following Sisal loop

sketch:

for initial
V := A; count := O;

repeat
count := old count + 1;

V:=f( old V )
until count = k
returns value of V
end for

For each loop body a new version of V and count is cre-

ated, and the value of the previous body (or the initial value)

can be referred to using the keyword old. The function .f

produces an array. In most cases this is done using a loop

construct. In order to apply multiple alignment in a loop as

the one above, the compiler unrolls the outer loop, thereby

creating a number of statically named arrays in the loop

body. In the following code we have, for the sake of sim-

plicity, ignored complications deahng with the unrolled loop

overrunning the count.

for initial
V := A; count := O;

repeat

count := old count + 3;
v>> := f( old V )
v> := f(v~~ )

V:= f( v’)
until count >= k

returns value of V

end for

Given the array reference patterns in f, V“, V’ and

V can now be multiple aligned. Partitioning the multiple

aligned loops will give rise to overlapping parts of the ar-

ray being allocated to processors and the recomputation in

the various processors takes the form of overlapping loop

bounds. Communication is only necessary at the top of the

unrolled loop bodies.

As an example, Successive Over Relaxation (SOR) re-

peatedly performs the following operations on an array:

{
A: = “

Ifi=lori=n

(A,-, + A,+ A,+ I)/3.O otherw,se

The SISAL code for SOR can be found in appendix A.

,2 P!

[

-’q. /1. .1 !- 1
P, ‘% ,,

iteration 1
,3

.] 1. * 1. I COllUllUNCd.10Rphase

---------P-)-----------. -------Pr-----------------n-'-- -—--—--—--—--—
~~ ~1 mnputabon phase

4

?) ,-.

(~

1

“ ““a- c“mumca’”nph”P3
.

iteration 1 ---~ ---T, --------*~ ----------------------------------------------- ‘–--–

~
conqutmon phase

~

““’’’”k~k~ ~ ~ ‘“”u’ahonpha”

b)

L=@n ~+ ‘3 !
.,

\.. * ‘ i— c.mmum.ation phase

I ‘~’ ,,

\"""-""---"`"-""-""--"--""--"-"""-"""-""-""~"--""-""-""--""-'"-""--"

..
iteration 1

~

~ compu tabon phax

L

P!

1’ . ,2
itera lion 2

(

.omputahon phax
w .1

?,
[. )

iteration 3
i ~ ~ ~1 COmpu@Qonpha=

Figure 2: SOR: a) no unrolling, b) unrolling depth of 1, c)

unrolling depth of 2.

Fig. 2 shows the effect of various levels of loop unrolling

on the computation of SOR on 3 processors. We will anal-

yse the number and size of messages sent and received by
the middle processor PZ, as the behavior of this processor is

typical for cases of larger numbers of processors. Fig. 2 a)

shows the case of no loop unrolling and single alignment. In



Stngle Multtple Alzgnment

Alzgnment depth = 1 depth = 5 depth = 10 depth = 15 depth = 20

PE Y’zme Bjy Tim e Efj Tzme J3fl Tame tiff Tame Eff Ttme B~ Imp

1 24.18 100 2418 100 24.18 100 24.1.9 100 2418 100 24.18 100 0.00

2 2120 57 1463 83 14.40 84 14.33 84 1430 8.5 14.23 85 4898

4 10.96 55 7.46 81 7.32 83 728 83 7,26 ?33 725 83 51 59

8 5.88 51 4.16 73 387 78 380 79 3.84 79 375 81 5680

16 3734 39 2,37 64 224 67 206 73 2.12 71 206 73 8640

Table 1: Comparative performance results for SOR with N=32768 and K=1OO.

each iteration Pz exchanges four messages (two sends and

two receives) of the size of one data element per message.

Fig. 2 b) shows the case of a loop unrolling of one combined

with multiple alignment. Communication occurs at the top

of the unrolled loop, i.e. every other iteration. Four mes-

sages of size two each are exchanged in Pz. Therefore, the

total number of messages exchanged in the whole computa-

tion is reduced by 5070 when compared to the single align-

ment implementation. However, the messages exchanged

in the multiple alignment implementation are longer. The

recomputation performed among processors, shown as the

overlapping regions in Fig. 2, causes the first unrolled iter-

ation to run two steps more: starting one step earlier and

ending one step later. Fig. 2 c) shows the implementation

of multiple alignment with unrolling factor two. Commu-

nication now occurs once per three iterations. The number

of messages exchanged is reduced to ~3~o compared to the

single alignment case. The size of each message is tripled

and there is more recomputation: the first iteration runs

four steps more, the second iteration runs two steps more.

When further increasing the depth of unrolling, the size of

the messages and the recomputation requirements increase

linearly. With an unrolling factor of k, the amount of re-

computation is 2 * (~~=1 i), which is quadratic in k.

Table. 1 shows the performance results that were ob-

tained with the single alignment and multiple alignment im-

plementation of SOR with depths of replication 1, 5, 10, 15,

and 20. All times are in seconds. The timing for one pro-

cessor is that of a message passing free sequential code. The

efficiencies ( Eff ) are all relative to this. The best improve-

ment: ( Single Alignment Time / Multiple Alignment Time -

1) percentage is given in column Imp. Fig. 3 summarizes the

efficiencies of the various versions of SOR. A depth of repli-

cation O in the graph of Fig. 3 represents single alignment.

We can draw two conclusions from the results. Firstly, it is

clear that multiple alignment pays off handsomely for this

one dimensional problem. From efficiencies of 39% to 5770

for the single alignment code, the multiple alignment code

jumps to efficiencies between 73~o and 85~0. Secondly, most

of the gain is achieved at unrolling factor depth one. This is

because for higher unrolling factors, the quadratic amount

of recomputation becomes costly.

3.1 Multiple Alignment in Higher Dimensional Arrays

For higher dimensional arrays the same multiple alignment

techniques apply. Again, by unrolling the outer loop, several

versions of an array are created. In many cases the depen-

dence between one array and the next takes the form of a

stencil, i.e. the dependence distance vectors are constant.

Row partitioning versus block partitioning of e.g. a two di-

mensional array gives rise to interesting trade off problems,

as the amount of communication in stencil computations is

a linear function of the size of the boundary between parti-

0 5 10 15 20
De@hof Repkahon

Figure 3: Performance results of SOR for different Depths

of Replication

tions. For example, an n x n array block partitioned over

p Xp processors gives rise to a boundary of size 4n/p, whereas

row partitioning would give rise to a boundary of size n.

Laplace performs repeated smoothing in a five-point sten-

cil over a t we-dimensional array:

{
A:,J = ‘“J

ifi=lori=norj=l orj=n, otherwise

x4,,y/2 O+(A, -I,J +A,+I,3 +A,,y_I +A,,J+I)/8 O

The SISAL code for Laplace can be found in appendix

B. Fig. 4 shows the inter-array dependence for the com-

putation of Laplace. In the case of row portioning and sin-

gle alignment each iteration requires a processor PM, which

deals with a set of rows in the middle of the array, to ex-

change four rows, two to send and two to receive, in four

messages. In multiple alignment with a loop unrolling fac-

tor of k, k + 1 iterations in PM require four messages, two of
size (k + 1) * 7J to send and two of size (k + 1) * n to receive.

The amount of recomputation required equals (~~=1 t) *n,

which is O(k2 * n).

Multiple alignment combined with block partitioning in-

troduces an increase in the number of processors a proces-

sor needs to communicate with. Figure 5 shows the effect of

loop unrolling and multiple alignment on the communication

requirements when the array is block partitioned. In single

alignment a processor PM, dealing with a block in the middle

of the matrix, needs to communicate with four neighbors

and each message is of size n/p. In multiple alignment with

90



Figure 4: Inter-Array dependence for Laplace.
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Figure 5: Multiple Alignment in Laplace.

a loop unrolling factor k, PM needs to communicate with

eight processors. For each k + 1 iterations PM requires eight

messages of size ( k + 1 ) * (n/p) plus eight messages of size

~~=, t. Thus, block partitioning combined with multiple
ahgnrnent requires four times more messages than row par-

titioning combined with multiple alignment. The amount of

recomputation is

4*(5t*(n/p)+fiy,2)

which is again 0(k2 * n). Tables 2, 3, 4 and 5 at he end

of the paper give the timing results for Laplace comparing

block and row partitioning, single and multiple alignment,

and MPICH and MPI-LAM. All efficiencies are relative to a

non message passing sequential code run on one processor.

Figures 6, 7, 8, 9, 10 and 11, also at the end of the paper,

summarize the efficiencies. The results lead to the following

Communication Speed The faster message passing in

MPICH versus MPI-LAM has a significant impact on the

efficiency of the programs run. This is the case for single as

welJ as multiple alignment. In MPICH we have a slow-down

in message passing for messages larger than 256 floats. This

has the strongest effect on row partitioning of problem size

256*256. Here multiple aligmment does not pay off as send-

ing one message of size 256 takes more than sending two

messages of size 128.

MPI-LAM exemplifies the effects of low communication

speed. Here multiple alignment is much more effective. We

observe improvements of over 50~o for both block and row

distribution. Thus, multiple alignment is more relevant in

cases of a high compute/communicate ratio.

Problem size 64 * 64 on 16 PEs is a case of too much

communication overhead Der comrmtation sweeu. However,

especially there, multiple ‘alignment improves performance.

Row versus Block Partitioning For all machine configu-

rations and problem sizes tested, row partitioning outper-

formed block partitioning. This is due to the smaller num-

ber of messages required for row partitioning. As data and

processor sizes increase, the gap between the two decreases.

Recomputation In both row and block partitioning, recom-

putation grows quadratically with the unrolling factor. In

most cases, therefore, only small unrolling factors pay off.

The biggest improvement for row partitioning (18.47 %) is

achieved by an unrolling factor of one on a problem size of

64 * 64 using MPICH. In this case we have a low number of

messages of small enough size, and a low amount of recom-

putation.

For block partitioning, improvements of about 18.5% oc-

cur for unrolling factors of three and four on problem sizes

64 * 64 and 128 * 128 for 16 processors using MPICH. Here

the message sizes are all under 256, which allows for efficient

message passing. We expect that the same improvements

can be achieved for larger problem sizes and larger number

of processors, as this would give rise to the same local matrix

size, message size and amount of recompution.

4 Related Work

Data Decomposition techniques have been studied by several

research groups. In the context of functional languages, Li

and Chen [22, 23] propose automatic array alignment and

partitioning techniques for the functional language Crystal

[30]. Rogers and Pingali [29] present some work where the

user specifies data decomposition for the functional language

Id Noveau [25]. In [27] M. O’Boyle describes program and

data transformations for executing a restricted version of

SISAL on distributed memory machines. The techniques

proposed are intended to solve problems of load imbalance,

data alignment, data distribution, and partitioning of loop

iterations.

In the context of imperative languages, Knobe Lukas,

Dally and Steel [18, 19], propose an approach for automatic

alignment of arrays, They consider the fact that an array

can be required to be aligned in different ways in differ-

ent parts of the program. When conflicting alignments are

present some of the alignments have to stay unhonored caus-

ing communication.

In Fortran D [15, 1 I], the user selects the data alignment

and distribution by means of DECCIMPOSITION, ALIGN and

DISTRIBUTE statements or directives. The DECOMFCIS1TION

observations.
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statement specifies a virtual template. The ALIGN directive

maps arrays onto this virtual template. Although the lan-

guage specification [1 I] states that replication can be done

via the ALIGN directive, we have not seen any publications

on the potential benefits of this, or how it is used in the

presence of conflicting ahgnrnents.

Recent work by Kremer [21, 20], considers stool to de-

rive automatic data alignment and distribution. The goal

is to translate Fortran 77 into Fortran D with appropriate

data decomposition statements to execute on a distributed

memory machine. This work considers the detection of when

is profitable to re-distribute arrays at run time by inserting

redistribution statements in the code. Our approach is a

static approach that saves the cost of redistributing array

values by recomputing them locally.

Chatterjee, Gilbert, Schreiber and Teng [6] propose an

approach to automatically determine alignment of variables
and intermediate values. The language model used is For-

tran 90. The alignment problem is stated as a minimization

problem trying to find an alignment function that minimizes

the communication cost. This work considers just the selec-

tion of one of the possible alignments. In [7] Chatterjee,

Gilbert and Schreiber present how to identify alignments

that vary in loops and arrays that require replicated align-

ments. Several differences with our approach are the fol-

lowing: First they just consider replication for sit uations

where the dimensionality of the target array is higher than

the dimensionality of the array to be aligned. Replication

occurs along the extra dimensions of the target array. An-

other major difference is that replication is done after the

array element has been computed in one processor. This

again makes our approach more static since the replication

is encoded in the program generated by means of therecom-

putation of data. No broadcast of data is required in order

to achieve replication.

In [2], Chapman, Mehrotra, Moritsch and Zimap;opose

dynamic data distribution in Vienna Fortran [4], where the

DISTRIBUTE statement is used to dynamically distribute

and realign arrays. The language specification for HPF [9]

includes realignment and redistribution directives. This is

different to what we propose since we want to statically

honor several ahgnments via replication and recomputation.

Ramanujam and Sadayappan [28] describe a method for

finding a partitioning of arrays where there is no communica-

tion among processors even in the presence of multiple align-

ments. The approach works for some type of access pattern

where a communication free Dartition can be found. Our

approach can be seen as an extension of this work where we

achieve communication free computation for those accesses

where communication-free partitioning does not exist. Our

approach works for conflicting alignments where as theirs
just consider communication free computation for multiple

non-conflicting alignments. They propose a cost function

to select one alignment in the presence of conflicting align-

ments.

5 Conclusions and Future Work

dimensional arrays, and up to 50% for two dimensional ar-

rays.

Key issues that make multiple alignment a profitable ap-

proach are recomputation versus communication costs, and

depth of replication.

Multiple alignment is most effective when the commu-

nication speed is relatively low. Since the current trend in

hardware technology is that processor speed increases faster

than network speed, we hypothesize that multiple alignment

will become more effective in improving the performance of

clusters of workstations with more powerful processors, used

as parallel machines. Also, with faster processors the extra

cost of recomputation will be less important.

The partitioning scheme has an impact on the message

size and on the amount of recomputation required in mul-

tiple alignment based on loop unrolling. It turns out that

most of the gains are made with low depth of unrolling, as

the message sizes and recomputation requirements are kept

low.

We are working on data dependence analysis and integer

linear programming techniques to implement multiple align-

ment. Data dependence and ILP are also used to determine

the elements that must be replicated on each processor. In-

put dependence analysis can help to find the local index set

of the recomputed arrays. Data dependence can also con-

tribute to give an estimate of the memory requirements of

the multiple alignment version.

Training sets [I] can be used to determinate the prof-

itability of multiple alignment. Training sets provide in-

formation about the execution times of several arithmetic

and communication operations typically performed by a pro-

gram. With this information it should become possible to

statically estimate the relative effect of depth of unrolling in

multiple alignment, and of certain partitioning methods.

We expect to derive formal algorithms for this and in-

tegrate it into a prototype SISAL compiler that we are

currently extending to support generation of code for Dis-

tributed Memory Machine.

Due to the high network latencies, scientific applications

show poor performance on clusters of workstations. Mul-

tiple alignment is a simple optimization that can improve

performance in these environments.

In this paper we have shown how communication can be re-

duced and overall performance increased by allowing multi-

ple alignment of conflicting array references. The examples

presented here suggest that recomputation of data can be

considered as a viable option to improve the performance of

regular problems implemented on distributed memory ma-

chines. We have shown improvements of up to 85~0 for one
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stngle Multaple A hgnment
Alzgnment depth = 1 depth = 2 depth = 3 depth = ,/

Swe PE Tame Efl Ttme Ef Ttme Eff Tame Eff TtrrL e Eff “ Imp
64x64 1 633 100 633 100 633 100 633 100 633 100 0.00

4 311 51 359 44 3.20 500 343 46 334 47 -281
16 2.81 14 270 15 272 15 239 17 237 17 18.57

128X128 1 2510 100 25.10 100 25.10 100 2510 100 2.510 100 000

4 9.27 68 9.80 64 9.58 65 968 65 947 66 -2.11

16 4.74 33 4.48 3.5 4.70 33 411 38 422 37 15.33

256x256 1 99.95 100 9995 100 9995 100 99.95 100 9995 100 000

4 3035 82 3264 77 33.30 75 3307 76 3312 75 -7 02

16 12.56 50 1317 47 1270 49 1304 48 1269 49 -102

Table 2: Performance results for Laplace, Block Distribution, K=1OO (MPICH)

.$tngle Multzple Alzgnment

Alzgnment depth = 1 depth = 2 depth = 3 depth = 4

Saze PE Time Eff Tame Eff Tame Eff Tzme Eff Tame Eff Imp

64x64 1 633 100 633 100 633 100 633 100 633 100 0.00
4 263 60 222 71 2,z5 7(3 229 69 234 68 1847

16 1 05 38 1 04 38 098 40 099 40 1 07 37 714

128X128 1 2510 100 2510 100 2510 100 2510 100 25 10 100 000
4 812 77 7.84 80 784 8.0 794 79 798 79 357

16 291 54 291 54 310 51 313 50 299 52 000

256x256 1 9995 100 9995 100 9995 100 9995 100 99.95 100 000
4 2962 84 3028 83 3048 82 3077 81 3104 81 -281

16 870 72 906 69 928 67 944 66 963 65 -397

Table 3: Performance results for Laplace K=l 00, Row Distribution, ( MPICH )

Szngle Multtple Alzgnment

Alzgnment depth = 1 depth = 2 depth = 3 depth = 4
~we PE Ttme Eff Tame Efl Tame Eff Tame Eff Ttme Eff Imp

64x64 1 633 100 633 100 6.33 100 633 100 633 100 000
4 6.26 2.5 .595 27 492 32 482 33 460 34 3491

16 569 7 554 7 461 9 4.13 10 4.01 10 525.5

128X128 1 2510 100 25.10 100 2510 100 2510 100 2510 100 000

4 1318 48 13.14 48 12.33 51 1189 53 12.17 52 1085

16 976 16 9.22 17 800 20 878 1.8 795 20 25.13

756X256 1 9995 100 9995 100 9995 100 999.5 100 9995 100 000-. . ..-. .
II iii ;;74! wii .+;i;i twi mm! 65i w.twi 66i zwoli 66 ii -304H

Table 4: Performance results for Laplace K=1OO, Block Distribution, ( MPI-LAM)

S2ngle Muktple A{zgnrnent
7

Alagnment depth = 1 depth = 2 depth = 3

Saze PE Tame Eff

depth = 4
Tame Eff Tame Eff Tame Eff Tame Eff Imp

64x64 1 633 100 633 100 633 100 633 100 633 100 000
4 403 39 3 3s 47 315 50 312 51 304 52 3257

16 253 16 2.01 20 1.71 23 172 23 1,6S 24
128X128 1 ?5 10 100 2510 100 25.10 100

5059

25 10 100 2510 100 000
4 979 64 943 67 9 15 69 912 69 939 67 ? 35

16 44 36 383 41 3.86 41 382 41 384 41 1518

256x256 1 9995 100 99.95 100 9995 100 9995 100 9995 100 000
4 3240 77 3294 76 3286 76 3320 75 3348 75 .140

16 11.37 55 1072 58 1086 58 1080 58 1146 54 606

Table 5: Performance results for Laplace K=l 00, Row Distribution, (M PI-LAM)
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A Sisal code for Successive Over Relaxation

type OneD = array [real]

frmction sor(n, k: integer; A : OneD returns OneD)

for initial

V:=A; 100 P:=O;

repeat

100P:= old loop + 1;

V :=array[l :1 .0]

Ii

for i in 2, n-1

el:=(old V[i-1] + old V[i] + old V[i+l]) / 3.0

returns array of el

end for

II
array[l :real(n)l

until loop=k

returns value of V

end for
end function % sor

B Sisal code for Lapiace

type Vector = array [real] ;

type Matrix = array [Vector]

function lapl ( Init_M: matrix; Ii, KMax: integer
returns matrix)

for initial
K:=l;

M: =Init -M
repeat

K := OLD K +1;

M := for I in 1,11 cross J in l,M

UM := if 1=1 I I=N I J=i IJ=N then old !4[1 ,J]

else old MII, J] / 2.0 +

(old MII-I, J] + old MII+l, J] +

old MII, J-1] + old MII, J+ll)/8. O

end if

returns array of nM

end for

until K = KMax

returns value of M

end for
end fuuction % laplace
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