


Data dependence

Consider two statement instances x and y, where x executes after y
in the sequential version of the program, that we want to parallelize

« xdepends ony if x and y access (read or write) the same memory
location, notation: y€x

» there are different kinds of dependences:
« y:write€x:read RAW read after write, true dependence
« y:rread €x:write WAR write after read, anti dependence
« y:write€x:write WAW write after write, output dependence
« yrread€x:read RAR read after read, input dependence

For the first 3, order matters (changing the order changes the
outcome of the program).

For the 4™ it does not, so why do we talk about it? (memory)



Parallelization

2 When true, anti, or output dependences occur in a sequential
program, their order cannot be changed when parallelizing
the program. WHY?

4 changing the order changes the outcome of the program




Examples

EX1: for (i=1; i<N; i++)
for (j=1; j<M; j++)

EX2: for (i=1; i<N; i++)
for (j=1; j<M; j++)
B[j] = f(B[j-1], B[j])




Iteration & Data Space

@ lteration Space: set of values that the loop iterators can take,
in our 3 examples:
@ arectangular region, with “corners” [1,1] and [N-1, M-1]

@ Data Space: set of values of array indices accessed by the
statements in the program
4 Ex1:2-D array, similar to the iteration space
9 Ex2:1-D array, bounded by [0, M-1]
9 Ex3:1-D array, bounded by [0, N-1]




Drawing Spaces

There are many ways to draw a space
We will draw iteration and data spaces like this:

row index i goes down, column index j goes right

=1 =2 3 4 s
—Tm o Bt e for (i=1; i<N; i++)
for (j=1; j<M; j++)
i~ O O O O O AL




Row major execution order




References and Dependences

2 Reference: an occurrence of an (array) variable on either
2 left hand side of an assignment (write)
2 right hand side of an assignment or in an expression (read)

of a statement in the loop body
2 Dependences specify which iteration points depend on
A




Finding dependences

Very hard problem (undecidable in general) but we have
special decidable cases, e.g. when the dependences are
expressed by linear expressions in loop indices. e.g.,

-1, j+1, 2%i+3, 3%j+n
For example, finding true dependences:

An iteration point [i, ] reads a memory location, that one or
more iterations may have written.

* Find the writers as a function of
R




Examples

EX1: for (i=1; i<N; i++)
for (j=1; j<M; j++)

EX2: for (i=1; i<N; i++)
for (j=1; j<M; j++)
B[j] = f(B[j-1], B[j])




Dependence Graph (Ex 1)

Ex1: for (i=1; i<N; i++)
for (j=1; j<M; j++)

Iteration [i,j] depends on:

[i) 1'1] and [i'1) J]

neighbors on west and north
and writes A[i,j]
(read by [i+1,j] and [i,j+1])



Dependence Graph (Ex 2)

Ex2: for (i=1; i<N; i++)
for (j=1; j<M; j++)
B[j] = f(B[j-1], B[j])

Iteration [i,j] true-depends on:

[i, j-1] and [i1, ]
neighbors on west and north

lteration [i-1, j+1] a memory location that iteration [i, j] will overwrite, so
[i,j] anti-depends on [i-1,j+1], and thus, [i-1,j+1] must be executed before [j, j],
and hence, [i,j] and [i-1,j+1] cannot execute in parallel

|2



Dependence graph (ex 3)

for (i=1; i<N; i++)
for (j=1; j<M; j++)
Cli] = f(c[i-1], C[i])

totally sequential dependence




Wavefront parallelization

2 When we know the dependences between
iterations (the dependence graph)
2 analyze to determine which iterations can happen
at which time step (hopefully many iterations can

happen at the same time step)
9 rewrite the program to represent this new order




Ex1 wavefront parallelization

Outer loop executes the diagonals sequentially from top left to bottom right
rallel all nodes in

Innerloowecutes inﬁ one diagonal




Ex1 wavefront parallelization

for (i=1; i<N; i++)
for (j=1; j<M; j++)

case 1: N=M -> square grid
for d = 0 fo N-1
// i walks from top side to left side
fori=0tod

for d = N fo 2N-2 | 1
// i walks from right side to bottom !




Ex1 wavefront parallelization

for (i=1; i<N; i++)
for (j=1; j<M; j++)

case 2: N !1=M
rectangular grid
// i starts at top side, right side
// finishes left side, bottom
for d = 0 to N+M-2
for i = max(0,d-M+1) to min(d,N-1)




i bounds on line intersections with diagonal

for d = 0 fo N+M-2
for i = max(0,d-M+1) to min(d,N-1)
// can also be written as 3 loops without mins and maxes

1: d = 0 to N-1
i=0 tod

2:d = N to M-1 s A
i = 0 to N-1

3:d =M to N+M-2
i = d-M+1 to N-1 i
R B R R Y




Ex2
wa
vefr
on
t parallelizat
ion

AN

KRR

‘ »
) ra/ra
Y

\)

\Y

RO /Ia
,"‘;/ "4’/’4’»»/’4
/‘]. -'4/' 'lrl’/ "4

\
Ne—\)




