CS475 data dependence # Data dependence Consider two statement instances x and y, where x executes after y in the sequential version of the program, that we want to parallelize - x depends on y if x and y access (read or write) the same memory location, notation: y ←x - there are different kinds of dependences: - y:write ←x:read RAW read after write, true dependence - y:read ←x:write WAR write after read, anti dependence - y:write ←x:write WAW write after write, output dependence - y:read ←x:read RAR read after read, input dependence For the first 3, order matters (changing the order changes the outcome of the program). For the 4th it does not, so why do we talk about it? (memory) #### Parallelization When true, anti, or output dependences occur in a sequential program, their order cannot be changed when parallelizing the program. WHY? changing the order changes the outcome of the program ## Examples ``` EX1: for (i=1; i<N; i++) for (j=1; j<M; j++) A[i,j] = f(A[i,j-1], A[i-1,j]) ``` ``` EX2: for (i=1; i<N; i++) for (j=1; j<M; j++) B[j] = f(B[j-1], B[j]) ``` ## Iteration & Data Space - Iteration Space: set of values that the loop iterators can take, in our 3 examples: - a rectangular region, with "corners" [1,1] and [N-1, M-1] - Data Space: set of values of array indices accessed by the statements in the program - Ex 1: 2-D array, similar to the iteration space - Ex 2: 1-D array, bounded by [0, M-1] - Ex 3: 1-D array, bounded by [0, N-1] We will concentrate on the iterations space here # Drawing Spaces There are many ways to draw a space We will draw iteration and data spaces like this: row index i goes down, column index j goes right for (i=1; i<N; i++) for (j=1; j<M; j++) ...A[i,j]... # Row major execution order #### References and Dependences - Reference: an occurrence of an (array) variable on either - left hand side of an assignment (write) - right hand side of an assignment or in an expression (read) - of a statement in the loop body - Dependences specify which iteration points depend on which others ## Finding dependences Very hard problem (undecidable in general) but we have special decidable cases, e.g. when the dependences are expressed by linear expressions in loop indices. e.g., $$i-1$$, $j+1$, $2*i+3$, $3*j+n$ For example, finding true dependences: An iteration point [i, j] reads a memory location, that one or more iterations may have written. - Find the writers as a function of [i,j]. - Find the "most recent writer" in this set (again, as a function of [i,j]) ## Examples ``` EX1: for (i=1; i<N; i++) for (j=1; j<M; j++) A[i,j] = f(A[i,j-1], A[i-1,j]) ``` ``` EX2: for (i=1; i<N; i++) for (j=1; j<M; j++) B[j] = f(B[j-1], B[j]) ``` # Dependence Graph (Ex 1) ``` Ex1: for (i=1; i<N; i++) for (j=1; j<M; j++) A[i,j] = f(A[i,j-1], A[i-1,j]) ``` ``` Iteration [i,j] depends on: [i, j-1] and [i-1, j] neighbors on west and north and writes A[i,j] (read by [i+1,j] and [i,j+1]) ``` # Dependence Graph (Ex 2) ``` Ex2: for (i=1; i<N; i++) for (j=1; j<M; j++) B[j] = f(B[j-1], B[j]) ``` Iteration [i,j] true-depends on: [i, j-1] and [i-1, j] neighbors on west and north Iteration [i-1, j+1] reads a memory location that iteration [i, j] will overwrite, so [i,j] anti-depends on [i-1,j+1], and thus, [i-1,j+1] must be executed before [i, j], and hence, [i,j] and [i-1,j+1] cannot execute in parallel # Dependence graph (ex 3) ``` for (i=1; i<N; i++) for (j=1; j<M; j++) C[i] = f(C[i-1], C[i]) ``` totally sequential dependence # Wavefront parallelization - When we know the dependences between iterations (the dependence graph) - analyze to determine which iterations can happen at which time step (hopefully many iterations can happen at the same time step) - rewrite the program to represent this new order #### Ex1 wavefront parallelization Reorder the loop: Outer loop executes the diagonals sequentially from top left to bottom right Inner loop executes in parallel all nodes in one diagonal ## Ex1 wavefront parallelization ``` for (i=1; i<N; i++) for (j=1; j<M; j++) A[i,j] = f(A[i,j-1], A[i-1,j]) case 1: N=M \rightarrow square grid for d = 0 to N-1 // i walks from top side to left side for i = 0 to d for d = N to 2N-2 // i walks from right side to bottom for i = d-N+1 to N-1 ``` ## Ex1 wavefront parallelization ``` for (i=1; i<N; i++) for (j=1; j<M; j++) A[i,j] = f(A[i,j-1], A[i-1,j]) case 2: N != M rectangular grid // i starts at top side, right side // finishes left side, bottom for d = 0 to N+M-2 for i = max(0,d-M+1) to min(d,N-1)</pre> ``` #### i bounds on line intersections with diagonal ``` for d = 0 to N+M-2 for i = max(0,d-M+1) to min(d,N-1) // can also be written as 3 loops without mins and maxes 1: d = 0 to N-1 i = 0 to d i=d i=d-M+1 2: d = N \text{ to } M-1 i = 0 to N-1 3: d = M \text{ to } N + M - 2 i = d-M+1 to N-1 i=0 i=N-1 ``` ## Ex2 wavefront parallelization