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   Cost and Optimality 

n  Cost = p.Tp   
n  p: number of processors 
n  Tp: Time complexity for parallel execution 
n  Also referred to as processor-time product 
n  Time can take communication into account 

n  Problem with mixing processing time and communication time 
n  Simple but unrealistic:  
                                                    operation: 1 time unit 
                 communicate with direct neighbor: 1 time unit  

n  Cost optimal if Cost = O(T1) 
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E.g. - Add n numbers on hypercube 

n  n numbers on n processor cube 
n  Cost?, cost optimal? 
n  assume 1 add = 1 time step 
               1 comms = 1 time step 
n  Assume the numbers are already distributed over the cube 

n  n numbers on p (<n) processor cube 
n  Cost?, cost optimal? S(n)? E(n)? 
n  Again, assume the numbers are already distributed over the 

cube 
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E.g. - Add n numbers on hypercube 

n  n numbers on n processor cube 
n  Cost =  O(n.log(n)), not cost optimal 

n  n numbers on p (<n) processor cube 
n  Tp =  n/p + 2.log(p) 
n  Cost =  O(n + p.log(p)),  
       cost optimal if  n = O(p.log(p))  
n  S   =  n.p / (n + 2.p.log(p)) 
n  E   =  n / (n + 2.p.log(p)) 
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E.g. - Add n numbers on hypercube 

n  n numbers on p (<n) processor cube 
n  Tp =  n/p + 2.log(p) 
n  Cost =  O(n + p.log(p)),  
      cost optimal if  n = O(p.log(p))  
n  S   =  n.p / (n + 2.p.log(p)) 
n  E   =  n / (n + 2.p.log(p)) 
n  Build a table: E as function of n and p 

n  Rows: n = 64, 192, 512      Cols: p = 1, 4, 8, 16 
n  larger n à higher E,           larger p à  lower E 



  E =  n / (n + 2.p.log(p)) 
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     p 
 n 

1         4              8             16 

  64  1 64/(64+16) = 4/5 64/(64+48) = 4/7 64/(64+128) = 1/3 

192  1 192/(192+16)=12/13 192/(192+48) = 4/5 192/(192+128) = 3/5  

512  1 512/(512+16)=32/33 512/(512+48) = 32/35 512/(512+128) = 4/5 



Observations 

n  to keep E=80% when growing p, we need to 
   grow n 
 
n  larger n à larger E 

n  larger p à smaller E 
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Scalability 

n  Ability to keep the efficiency fixed, 
   when p is increasing, provided we also 

increase n 

n  e.g. Add n numbers on p processors 
(cont.) 
n  Look at the (n,p) efficiency table 
n  Efficiency is fixed (at 80%) with p increasing 

n  only if n is increased 



Quantified.. 

n  Efficiency is fixed (at 80%) with p 
increasing only if n is increased 

n  How much? 

n  E = n / (n+ 2plogp) = 4/5   
      4(n+ 2plogp)  = 5n 
          n = 8plogp 
   (Check with the table) 
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Iso-efficiency metric   

n  Iso-efficiency of a scalable system 
n  measures degree of scalability of parallel system 
n  parallel system: algorithm  +  topology  
             + compute / communication cost model 
 
n  Iso-efficiency of a system: the growth rate of problem 

size n, in terms of number of processors p, to keep 
efficiency fixed 

       eg n = O(p logp) for adding on a hypercube 
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Sources of Overhead 
n  Communication 

n  PE - PE 
n  PE – memory 
n  And the busy waiting associated with this 

n  Load imbalance  
n  Synchronization causes idle processors 
n  Program parallelism does not match machine parallelism all 

the time 
n  Sequential components in computation 

n  Extra work 
n  To achieve independence (avoid communication), parallel 

algorithms sometimes re-compute values 


