## CS475 Parallel Processing

## Cost Optimality and Iso Efficiency Wim Bohm, Colorado State University

## Cost and Optimality

- Cost = p. Tp
- p : number of processors
- $T_{p}$ : Time complexity for parallel execution
- Also referred to as processor-time product
- Time can take communication into account
- Problem with mixing processing time and communication time
- Simple but unrealistic:
operation: 1 time unit communicate with direct neighbor: 1 time unit
- Cost optimal if Cost $=\mathrm{O}\left(\mathrm{T}_{\mathbf{1}}\right)$


## E.g. - Add $n$ numbers on hypercube

- n numbers on n processor cube
- Cost?, cost optimal?
- assume 1 add = 1 time step

$$
1 \text { comms = } 1 \text { time step }
$$

- Assume the numbers are already distributed over the cube
- n numbers on $\mathrm{p}(<\mathrm{n})$ processor cube
- Cost?, cost optimal? S(n)? E(n)?
- Again, assume the numbers are already distributed over the cube


## E.g. - Add $n$ numbers on hypercube

- n numbers on n processor cube
- Cost = O(n.log(n)), not cost optimal
- n numbers on $\mathbf{p}(<\mathrm{n})$ processor cube
- $T_{p}=n / p+2 \cdot \log (p)$
- Cost = O(n + p.log(p)),
cost optimal if $n=O(p . \log (p))$
- $S=n . p /(n+2 . p . \log (p))$
- $E=n /(n+2 \cdot p \cdot \log (p))$


## E.g. - Add $n$ numbers on hypercube

- n numbers on $\mathbf{p}(<\mathrm{n})$ processor cube
- $T_{p}=n / p+2 . \log (p)$
- Cost $=O(n+p . \log (p))$, cost optimal if $n=O(p . \log (p))$
- $S=n . p /(n+2 . p \cdot \log (p))$
- $E=n /(n+2 \cdot p \cdot \log (p))$
- Build a table: E as function of n and p
- Rows: $\mathrm{n}=64,192,512$ Cols: $\mathrm{p}=1,4,8,16$
- larger $\mathrm{n} \rightarrow$ higher $\mathrm{E}, \quad$ larger $\mathrm{p} \rightarrow$ lower E


## $\mathrm{E}=\mathrm{n} /(\mathrm{n}+2 . \mathrm{p} \cdot \log (\mathrm{p}))$

| p | 1 | 4 | 8 | 16 |
| :---: | :---: | :---: | :--- | :--- |
| n |  |  | 8 |  |
| 64 | 1 | $64 /(64+16)=4 / 5$ | $64 /(64+48)=4 / 7$ | $64 /(64+128)=1 / 3$ |
| 192 | 1 | $192 /(192+16)=12 / 13$ | $192 /(192+48)=4 / 5$ | $192 /(192+128)=3 / 5$ |
| 512 | 1 | $512 /(512+16)=32 / 33$ | $512 /(512+48)=32 / 35$ | $512 /(512+128)=4 / 5$ |

## Observations

- to keep $\mathrm{E}=80 \%$ when growing p , we need to grow n
- larger n $\rightarrow$ larger E
- larger p $\rightarrow$ smaller E


## Scalability

- Ability to keep the efficiency fixed, when $p$ is increasing, provided we also increase $n$
- e.g. Add n numbers on p processors (cont.)
- Look at the ( $\mathrm{n}, \mathrm{p}$ ) efficiency table
- Efficiency is fixed (at $80 \%$ ) with $p$ increasing
- only if n is increased


## Quantified..

- Efficiency is fixed (at 80\%) with p increasing only if $n$ is increased
- How much?
- $E=n /(n+2 p l o g p)=4 / 5$ $4(n+2$ plogp $)=5 n$ n = 8plogp
(Check with the table)


## Iso-efficiency metric

- Iso-efficiency of a scalable system
- measures degree of scalability of parallel system
- parallel system: algorithm + topology
+ compute / communication cost model
- Iso-efficiency of a system: the growth rate of problem size $n$, in terms of number of processors $p$, to keep efficiency fixed
eg $\mathrm{n}=\mathrm{O}(\mathrm{p} \log p)$ for adding on a hypercube


## Sources of Overhead

- Communication
- PE - PE
- PE - memory
- And the busy waiting associated with this
- Load imbalance
- Synchronization causes idle processors
- Program parallelism does not match machine parallelism all the time
- Sequential components in computation
- Extra work
- To achieve independence (avoid communication), parallel algorithms sometimes re-compute values

