
CS475 Parallel Processing

Cost Optimality and Iso Efficiency
Wim Bohm, Colorado State University

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

CS575 lecture 5 2

 Cost and Optimality

n  Cost = p.Tp
n  p: number of processors
n  Tp: Time complexity for parallel execution
n  Also referred to as processor-time product
n  Time can take communication into account

n  Problem with mixing processing time and communication time
n  Simple but unrealistic:
 operation: 1 time unit
 communicate with direct neighbor: 1 time unit

n  Cost optimal if Cost = O(T1)

CS575 lecture 5 3

E.g. - Add n numbers on hypercube

n  n numbers on n processor cube
n  Cost?, cost optimal?
n  assume 1 add = 1 time step
 1 comms = 1 time step
n  Assume the numbers are already distributed over the cube

n  n numbers on p (<n) processor cube
n  Cost?, cost optimal? S(n)? E(n)?
n  Again, assume the numbers are already distributed over the

cube

CS575 lecture 5 4

E.g. - Add n numbers on hypercube

n  n numbers on n processor cube
n  Cost = O(n.log(n)), not cost optimal

n  n numbers on p (<n) processor cube
n  Tp = n/p + 2.log(p)
n  Cost = O(n + p.log(p)),
 cost optimal if n = O(p.log(p))
n  S = n.p / (n + 2.p.log(p))
n  E = n / (n + 2.p.log(p))

CS575 lecture 5 5

E.g. - Add n numbers on hypercube

n  n numbers on p (<n) processor cube
n  Tp = n/p + 2.log(p)
n  Cost = O(n + p.log(p)),
 cost optimal if n = O(p.log(p))
n  S = n.p / (n + 2.p.log(p))
n  E = n / (n + 2.p.log(p))
n  Build a table: E as function of n and p

n  Rows: n = 64, 192, 512 Cols: p = 1, 4, 8, 16
n  larger n à higher E, larger p à lower E

 E = n / (n + 2.p.log(p))

CS575 lecture 5 6

 p
 n

1 4 8 16

 64 1 64/(64+16) = 4/5 64/(64+48) = 4/7 64/(64+128) = 1/3

192 1 192/(192+16)=12/13 192/(192+48) = 4/5 192/(192+128) = 3/5

512 1 512/(512+16)=32/33 512/(512+48) = 32/35 512/(512+128) = 4/5

Observations

n  to keep E=80% when growing p, we need to
 grow n

n  larger n à larger E

n  larger p à smaller E

CS575 lecture 5 7

CS575 lecture 5 8

Scalability

n  Ability to keep the efficiency fixed,
 when p is increasing, provided we also

increase n

n  e.g. Add n numbers on p processors
(cont.)
n  Look at the (n,p) efficiency table
n  Efficiency is fixed (at 80%) with p increasing

n  only if n is increased

Quantified..

n  Efficiency is fixed (at 80%) with p
increasing only if n is increased

n  How much?

n  E = n / (n+ 2plogp) = 4/5
 4(n+ 2plogp) = 5n
 n = 8plogp
 (Check with the table)

CS575 lecture 5 9

CS575 lecture 5 10

Iso-efficiency metric

n  Iso-efficiency of a scalable system
n  measures degree of scalability of parallel system
n  parallel system: algorithm + topology
 + compute / communication cost model

n  Iso-efficiency of a system: the growth rate of problem

size n, in terms of number of processors p, to keep
efficiency fixed

 eg n = O(p logp) for adding on a hypercube

CS575 lecture 5 11

Sources of Overhead
n  Communication

n  PE - PE
n  PE – memory
n  And the busy waiting associated with this

n  Load imbalance
n  Synchronization causes idle processors
n  Program parallelism does not match machine parallelism all

the time
n  Sequential components in computation

n  Extra work
n  To achieve independence (avoid communication), parallel

algorithms sometimes re-compute values

