CS 475: Performance Evaluation

Wim Bohm
Colorado State University
Fall 2012

Analyzing Program Performance

- In empirical Computer Science, we plot functions describing the run time (or the memory use) of a program:
 - □ This can be as a **function of the input size**. We have seen this in e.g. cs320 or cs420, where we study polynomial and exponential (**monotonically growing**) sequential complexity.
 - ☐ In this class we also study program performance as a function of the number of processors.
 - In this case the functions are positive and, hopefully decreasing.
 - Also we plot speedup curves, which are usually asymptotic

Analyzing/Plotting Data

When you run a program for a number of inputs (n) on a parallel machine with a number of processors (p), you end up with performance data sets. You want to characterize these in (a set of) functions:

x: input size, y: performance or

x: #processors, y: performance.

- To study (parallel) program's performance, we often use plotting tools
 - gnuplot, excel, matlab ... (in these slides: excel)
- Let's look at increasing functions first.

n	f(n)	g(n)	h(n)
1	2	9	2
2	12	18	6
3	36	35	24
4	80	68	68
5	150	131	162

What kinds of functions are f, g and h?

- exponential? which base?
- polynomial? which order?

Hard / impossible to infer

М.

Why are functions hard to infer?

- Two problems:
 - □ Very small domain (here 1..5)
 - Try to get a large data domain

- ☐ Interpreting super-linear functions from plots is hard
 - All polynomials and exponentials **swoop up**

n	f(n)	g(n)	h(n)
1	2	9	2
2	12	18	6
3	36	35	24
4	80	68	68
5	150	131	162
7	400	520	624
10	1100	4106	2510
12	1872	16396	5196

Do you get a better idea now?

Which function may be polynomial, which exponential? Still, not all clear (order, base...), h(n) may spike up later...

7

Straight Lines

We get the most information from straight lines!

- \square We can easily recognize a straight line (y = ax+b)
 - The slope (a) and y intercept (b) tells us all.
- So we need to turn our data sets into straight lines.
- □ This is easiest done using log-s, because they turn a multiplicative factor into a shift (y axis crossing b), and an exponential into a multiplicative factor (slope a)

Exponential functions

- $\log(2^n) = n \log 2$ linear in n
- $\log(3^n) = n \log 3$ angle of the line: base of log

- $\log((3^n)/4) = n \log 3 \log 4$ /4 shifts down

n	2 ⁿ	3 ⁿ	20*3 ⁿ
0	1	1	20
1	2	3	60
2	4	9	180
3	8	27	540
4	16	81	1620
5	32	243	4860
7	128	2087	41740
10	1024	56349	1126980

semi-log plot: y-axis on log scale x-axis linear

angle: base

shift: multiplicative factor

Polynomials

What if we take the log of a polynomial? e.g. $f(n) = 5n^3$

$$\log(f(n)) = \log(5n^3) = \log 5 + 3 \log(n)$$

not a straight line!

- But the log of a polynomial is linear in log(n)
- Therefore we need to plot polynomials on a log-log scale (both x and y axis logarithmic)

Polynomials: log-log plot

n	n^2	n^3	20*n ³
1	1	1	20
2	4	8	160
4	16	64	1280
8	64	512	10240
16	256	4096	81820
32	1024	32768	655360

angle: degree

shift: multiplicative factor

logs of sums

- Often we don't have a single factor in our function:
 - $\Box 3^{n} + 2^{n}$
 - \square n³ + n²
 - □ Watch it: log of sum is not sum of logs (what is?)
- Straight lines not completely straight anymore but asymptotically straight:

$$\log(3^{n}+2^{n}) = \log((1+(2/3)^{n})3^{n}) = \log(1+(2/3)^{n}) + n\log(3)$$
$$\log(n^{3}+n^{2}) = \log((1+(1/n))n^{3}) = \log(1+(1/n)) + 3\log(n)$$
$$\log(1+(2/3)^{n}) \text{ and } \log(1+(1/n)) \text{ go to zero for large n}$$

Back to the data: f

The semi-log plot does not give a straight line, so f is not exponential

Is f polynomial?

n	f(n)	
1	2	
2	12	
3	36	
4	80	
5	150	
7	400	
10	1100	
12	1872	

YES! The log-log plot goes asymptotically to a straight line, so f is polynomial, but what is its leading term?

What is f's degree?

n	f(n)	n^2	n^3	n^4
1	2	1	1	1
2	12	4	8	16
3	3 6	9	27	81
4	80	16	64	256
5	150	25	125	625
7	400	49	343	2401
10	1100	100	1000	10000
12	1872	144	1728	20736

Compare with n, n²,n³,n⁴

f is degree 3, no multiplicative factor (no shift up): $f(n)=n^3+...$ We usually only worry about the leading term.

How about g?

n	g(n)	
1	9	
2	18	
3	35	
4	68	
5	131	
7	520	
10	4106	
12	16396	

g is linear on semi log plot so exponential what base: compare to 2ⁿ, 3ⁿ

How about g?

n	g(n)	2 ⁿ	3 ⁿ
1	9	2	3
2	18	4	9
3	35	8	27
4	68	16	81
5	131	32	243
7	520	128	2187
10	4106	1024	59049
12	16396	4096	531441

g is linear on semi-log plot so exponential what base: compare to 2ⁿ, 3ⁿ

How about g?

n	g(n)	2 ⁿ	3 ⁿ
1	9	2	3
2	18	4	9
3	35	8	27
4	68	16	81
5	131	32	243
7	520	128	2187
10	4106	1024	59049
12	16396	4096	531441

g: same slope as 2^n , but shifted up, factor 4 so $g(n) = 4 \cdot 2^n + \dots$

м

Decreasing functions

- This second class of functions can be used to represent running times of programs as a function of the number of processors.
- Ideally, these functions decrease hyperbolically
 - \Box f(p) = c/p time to execute the program with p processors
 - \Box **f(1)** = **c** sequential time
- But this is hardly ever the case. One of the reasons for this is that programs have inherently sequential parts, that do not speed up with more processors:
 - \Box f(p) = a + c/p a: the sequential part, c: the parallelizable part

Plotting hyperbolic functions

- A simple way to turn T(p) = c/p into a straight line is to plot its reciprocal: y = 1/T(p) = p/c
 - \square This is a straight line with slope 1/c.
 - When analyzing parallel performance we scale this to y'=T(1)/T(p). If T(p) is the time it takes to execute a program with p processors, we call this the **speedup of the program**
- In the case of T(p) = a + c/p, the speedup is S(p)=T(1)/T(p)=(a+c)/(a+c/p)
 - \square For a>0 this is not a straight, but a curve that grows and then flattens out to a constant (a+c)/a

٧

Plotting Data: Summary

- Visually, a straight line conveys the most information.
 - ☐ If your data is not linear, massage it so that is linear, then deduce the original function.
- If y=f(x) is polynomial: $\log y$ is linear with $\log x$ $y = f(x) = a_0 + a_1 x + \dots + a_n x^n \approx a_n x^n$ (asymptotically) $\log y = \log a_n + n \log x$
- If y=f(x) is exponential: $\log y$ is linear with x $y = f(x) = ba^x$ $\log y = \log b + x(\log a)$
- In the case of T(p) = a + c/p, the speedup is S(p)=T(1)/T(p)=(a+c)/(a+c/p)