
CS 475: Performance Evaluation

Wim Bohm
Colorado State University

Fall 2012

Analyzing Program Performance
n  In empirical Computer Science, we plot functions

describing the run time (or the memory use) of a
program:
¨ This can be as a function of the input size. We have seen

this in e.g. cs320 or cs420, where we study polynomial and
exponential (monotonically growing) sequential complexity.

¨  In this class we also study program performance as a function
of the number of processors.

n  In this case the functions are positive and, hopefully decreasing.
n  Also we plot speedup curves, which are usually asymptotic

Analyzing/Plotting Data
n  When you run a program for a number of inputs (n) on

a parallel machine with a number of processors (p), you
end up with performance data sets. You want to
characterize these in (a set of) functions:

 x: input size, y: performance or
 x: #processors, y: performance.
n  To study (parallel) program’s performance, we often

use plotting tools
n  gnuplot, excel, matlab … (in these slides: excel)

n  Let’s look at increasing functions first.

Example: 3 data sets f, g and h

What kinds of functions are
 f, g and h?

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 3" 4" 5"

f"

g"

h"

n f(n) g(n) h(n)
1 2 9 2

2 12 18 6

3 36 35 24

4 80 68 68

5 150 131 162

Hard / impossible to infer

•  exponential? which base?
•  polynomial? which order?

Why are functions hard to infer?

n Two problems:
¨ Very small domain (here 1..5)

n  Try to get a large data domain

¨ Interpreting super-linear functions from plots is hard
n  All polynomials and exponentials swoop up

Larger domain

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

0" 2" 4" 6" 8" 10" 12" 14"

f"

g"

h"

n f(n) g(n) h(n)
1 2 9 2

2 12 18 6

3 36 35 24

4 80 68 68

5 150 131 162

7 400 520 624

10 1100 4106 2510

12 1872 16396 5196

Do you get a better idea now?
Which function may be polynomial, which exponential?
Still, not all clear (order, base…), h(n) may spike up later…

Straight Lines
We get the most information from straight lines!

¨  We can easily recognize a straight line (y = ax+b)
n  The slope (a) and y intercept (b) tells us all.

¨  So we need to turn our data sets into straight lines.
¨  This is easiest done using log-s, because they turn a

multiplicative factor into a shift (y axis crossing b) ,
and an exponential into a multiplicative factor
(slope a)

Exponential functions

n  log(2n) = n log2 linear in n
n  log(3n) = n log 3 angle of the line: base of log

n  log(4.3n) = n log3 + log4 *4 shifts up
n  log((3n)/4) = n log3 – log4 /4 shifts down

Exponentials: semi-log plot

n 2n 3n 20*3n
0 1 1 20

1 2 3 60

2 4 9 180

3 8 27 540

4 16 81 1620

5 32 243 4860

7 128 2087 41740

10 1024 56349 1126980

1"

10"

100"

1000"

10000"

100000"

1000000"

10000000"

0" 2" 4" 6" 8" 10" 12"

2^n"

3^n"

20"3^n"

semi-log plot:
 y–axis on log scale
 x-axis linear
angle: base
shift: multiplicative factor

Polynomials
n What if we take the log of a polynomial?
 e.g. f(n) = 5n3
 log(f(n)) = log(5n3) = log5 + 3 log(n)
 not a straight line!
n But the log of a polynomial is linear in log(n)
n Therefore we need to plot polynomials on a
 log-log scale (both x and y axis logarithmic)

Polynomials: log-log plot

n n2 n3 20*n3
1 1 1 20

2 4 8 160

4 16 64 1280

8 64 512 10240

16 256 4096 81820

32 1024 32768 655360

angle: degree
shift: multiplicative factor

1"

10"

100"

1000"

10000"

100000"

1000000"

1" 10" 100"

n^2"

n^3"

20"n^3"

logs of sums
n Often we don’t have a single factor in our function:

¨ 3n + 2n
¨ n3 + n2

¨ Watch it: log of sum is not sum of logs (what is?)

n  Straight lines not completely straight anymore but
asymptotically straight:

 log(3n+2n) = log((1+(2/3)n)3n)=log(1+(2/3)n) + nlog(3)
 log(n3+n2) = log((1+(1/n))n3)=log(1+(1/n)) + 3log(n)
 log(1+(2/3)n) and log(1+(1/n)) go to zero for large n

Back to the data: f

n f(n)
1 2

2 12

3 36

4 80

5 150

7 400

10 1100

12 1872 1"

10"

100"

1000"

10000"

0" 5" 10" 15" 20" 25"

f"

f"

The semi-log plot does not give a straight line,
so f is not exponential

Is f polynomial?
n f(n)
1 2

2 12

3 36

4 80

5 150

7 400

10 1100

12 1872

YES! The log–log plot goes asymptotically to a straight line,
so f is polynomial, but what is its leading term?

1"

10"

100"

1000"

10000"

1" 10" 100"

f"

f"

What is f’s degree?
n f(n) n2 n3 n4
1 2 1 1 1

2 12 4 8 16

3 36 9 27 81

4 80 16 64 256

5 150 25 125 625

7 400 49 343 2401

10 1100 100 1000 10000

12 1872 144 1728 20736

Compare with n, n2,n3,n4 1"

10"

100"

1000"

10000"

100000"

1000000"

1" 10" 100"

f"

n*n"

n*n*n"

n*n*n*n"

f is degree 3, no multiplicative factor (no shift up): f(n)=n3+..
We usually only worry about the leading term.

How about g?
n g(n)
1 9

2 18

3 35

4 68

5 131

7 520

10 4106

12 16396
1"

10"

100"

1000"

10000"

100000"

0" 2" 4" 6" 8" 10" 12" 14"

g"

g"

g is linear on semi log plot so exponential
what base: compare to 2n, 3n

How about g?
n g(n) 2n 3n
1 9 2 3

2 18 4 9

3 35 8 27

4 68 16 81

5 131 32 243

7 520 128 2187

10 4106 1024 59049

12 16396 4096 531441

g is linear on semi-log plot so exponential
what base: compare to 2n, 3n

1"

10"

100"

1000"

10000"

100000"

1000000"

0" 2" 4" 6" 8" 10" 12" 14"

g"

2^n"

3^n"

How about g?
n g(n) 2n 3n
1 9 2 3

2 18 4 9

3 35 8 27

4 68 16 81

5 131 32 243

7 520 128 2187

10 4106 1024 59049

12 16396 4096 531441

g: same slope as 2n, but shifted up, factor 4
 so g(n) = 4.2n+ …

1"

10"

100"

1000"

10000"

100000"

1000000"

0" 2" 4" 6" 8" 10" 12" 14"

g"

2^n"

3^n"

Decreasing functions
n  This second class of functions can be used to represent

running times of programs as a function of the number
of processors.

n  Ideally, these functions decrease hyperbolically
¨  f(p) = c/p time to execute the program with p processors
¨  f(1) = c sequential time

n  But this is hardly ever the case. One of the reasons for
this is that programs have inherently sequential parts, that
do not speed up with more processors:
¨  f(p) = a + c/p a: the sequential part, c: the parallelizable part

Plotting hyperbolic functions
n  A simple way to turn T(p) = c/p into a straight line is

to plot its reciprocal: y = 1/T(p) = p/c
¨  This is a straight line with slope 1/c.
¨  When analyzing parallel performance we scale this to

y’=T(1)/T(p). If T(p) is the time it takes to execute a
program with p processors, we call this the speedup of the
program

n  In the case of T(p) = a + c/p, the speedup is
 S(p)=T(1)/T(p)= (a+c)/(a+c/p)

¨ For a>0 this is not a straight, but a curve that grows and then
flattens out to a constant (a+c)/a

Plotting Data: Summary
n  Visually, a straight line conveys the most information.

¨  If your data is not linear, massage it so that is linear, then deduce
the original function.

n  If y=f(x) is polynomial: log y is linear with log x

n  If y=f(x) is exponential: log y is linear with x

n  In the case of T(p) = a + c/p, the speedup is
 S(p)=T(1)/T(p)= (a+c)/(a+c/p)

y = f (x) = a0 + a1x ++ anx
n ≈ anx

n (asymptotically)
log y = log an + nlog x

y = f (x) = bax

log y = log b+ x(log a)

