Wim Bohm

Colorado State University
Fall 2012

" JE
Analyzing Program Performance

B [n empirical Computer Science, we plot functions
describing the run time (or the memory use) of a
program:

This can be as a function of the input size. We have seen

this in e.g. ¢s320 or cs420, where we study polynomial and
exponential (monotonically growing) sequential complexity.

In this class we also study program performance as a function
of the number of processors.

m In this case the functions are positive and, hopefully decreasing.

m Also we plot speedup curves, which are usually asymptotic

" S
Analyzing/Plotting Data

m When you run a program for a number of inputs (n) on
a parallel machine with a number of processors (p), you
end up with performance data sets. You want to
characterize these in (a set of) functions:

X: input size, y: performance or
x: Hprocessors, y: performance.

m To study (parallel) program’s performance, we often
use plotting tools

B onuplot, excel, matlab ... (in these slides: excel)

m [.et’s look at increasing functions first.

" S
Example: 3 data sets f, g and h

n_f(n) g(n) h(n)
1 2 9 2
2 12 18 6
3 36 35 24
4 80 68 68
5 150 131 162

What kinds of functions are
f, g and h?

« exponential? which base?
* polynomial? which order?

Hard / impossible to infer

180

160

140

120

100

80

60

40

20

" S
Why are functions hard to infer?

B Two problems:

Very small domain (here 1..5)

m Try to get a large data domain

Interpreting super-linear functions from plots is hard

m All polynomials and exponentials swoop up

"
Larger domain

f(n) g(n) h(n)

n

1 2 9 2

2 12 18 6

3 36 35 24
4 80 68 68
5 150 131

7 400 520 624
10 1100 4106 2510
12 1872 16396 5196

162

Do you get a better idea now?

18000

16000

14000

12000

10000

8000

6000

4000

2000

O_

0 2 4 6

10

12 14

Which function may be polynomial, which exponential?
Still, not all clear (order, base...), h(n) may spike up later...

" N
Straight Lines

We get the most information from straight lines!

We can easily recognize a straight line (y = ax+b)
m The slope (a) and y intercept (b) tells us all.

So we need to turn our data sets into straight lines.

This 1s easiest done using log-s, because they turn a
multiplicative factor into a shift (y axis crossing b) ,
and an exponential into a multiplicative factor

(slope a)

" S
Exponential functions

B log(2") =nlog2 linearinn
mlog(3") =nlog3 angle of the line: base of log

m log(4.3") = nlog3 + log4 *4 shifts up
m log((3")/4) = nlog3 — log4 /4 shifts down

Exponentials: semi-log plot

20 3 20%3°
1 1 20

2 3 60

4 9 180

8 27 540

16 81 1620
32 243 4860
128 2087 41740
10 1024 56349 1126980

n
0
1
2
3
4
5
7

semi-log plot:
y—axis on log scale
x-axis linear
angle: base
shift: multiplicative factor

10000000

1000000

100000

10000

—0—2M

= =3

1000 4
Vs 20 3%n
V4
»
V4

100 »
V4
v
V4
10

10 12

" S
Polynomaials

m What if we take the log of a polynomial?
e.g. f(n) = 5n’
log(f(n)) = log(5n°%) = log5 + 3 log(n)
not a straight line!
m But the log of a polynomial is linear in log(n)
B Therefore we need to plot polynomials on a

log-log scale (both x and y axis logarithmic)

" A
Polynomials: log-log plot

n? n3 20%n3
1 1 20
4 8 160

16 64 1280

64 512 10240
16 256 4096 81820
32 1024 32768 655360

© H b =I5

angle: degree
shift: multiplicative factor

1000000

100000 -

10000 -

1000 -

100 -

10 +

100

" I
logs of sums

m Often we don’t have a single factor in our function:
30+ 20
n’ + n?
Watch it: log of sum is not sum of logs (what 1s?)
B Straight lines not completely straight anymore but
asymptotically straight:
log(32+2") = log((1+(2/3)M 3" =log(1+(2/3)") + nlog(3)
log(n’+n?) = log((1+(1/n))n’)=log(1+(1/n)) + 3log(n)
log(1+(2/3)") and log(1+(1/n)) go to zero for large n

" S
Back to the data: t

n f(n) o f)

1 2 .

2 12 oo >

3 36 ol

4 80 Loo -

5 150 V4

7 400 o 1

10 1100

2 18 oy - ro 15 20 os

The semi-log plot does not give a straight line,
so f 1s not exponential

" B
Is f polynomaial?

f
n f(n) 10000
1 2 4
2 12 1000 > §
3 36 g
4 80 100 . — £
5 150 g
7 400 o d
10 1100
12 1872 L] | |
1 10 100

YES! The log—log plot goes asymptotically to a straight line,
so f 1s polynomaial, but what 1s its leading term?

" B
What 1s f's degree?

1000000

fn) n®> n* nt
2 1 1 1 100000
12 4 8 16 j/{
36 9 27 81
380 16 64 256 _ / / s

150 25 125 625 / o
400 49 343 2401 ﬁf

10 1100 100 1000 10000
12 1872 144 1728 20736 0 1

R B

Compare with n, n?,n3,n* o

1 10 100

f1s degree 3, no multiplicative factor (no shift up): f(n)=ns+..
We usually only worry about the leading term.

" B
How about g?

g(n)

n
1
2
3
4
5
7

10
12

9
18
35
68
131
520
4106
16396

100000

10000

1000

100

10 -

1

0

10

12

14

o 1s linear on semi log plot so exponential

what base: compare to 2, 3»

How about g?

n gn) 2° 3"

1 9 i 3

2 18 4 9

3 35 8 27

4 68 16 81

5 131 32 243

7 520 128 2187
10 4106 1024 59049
12 16396 4096 531441

1000000

100000

10000

1000

100

10 -

1

0 2 4 6 8 14

@)

3™

o 1s linear on semi-log plot so exponential
what base: compare to 2, 3»

" B
How about g?

n g(n) zn 31’1 1000000
1 9 2 3 100000
2 18 4 9

10000
3 35 8 27 g
4 68 16 81 1000 =l
5 131 32 243 100 2 3hn
7 50 128 2187 . J
10 4106 1024 59049 g
12 16396 4096 531441 s 4 s s 1 o1 owu

o: same slope as 27, but shifted up, factor 4
so g(n) = 4.2+ ...

" J
Decreasing functions

m 'This second class of functions can be used to represent
running times of programs as a function of the number
ot processofs.

B [deally, these functions decrease hyperbolically
f(p) = c/p time to execute the program with p processors
f(1) = ¢ sequential time
B But this is hardly ever the case. One of the reasons for
this 1s that programs have inherently sequential parts, that
do not speed up with more processors:
f(p) = a+ c/p a: the sequential part, c: the parallelizable part

" S
Plotting hyperbolic functions

m A simple way to turn T(p) = ¢/p into a straight line is
to plot its reciprocal: y = 1/T(p) = p/c
This is a straight line with slope 1/c.

When analyzing parallel performance we scale this to
y=T(1)/T(p). If T(p) is the time it takes to execute a

program with p processors, we call this the speedup of the
program

m [n the case of T(p) = a + ¢/p, the speedup is
SE)=TM)/T(p)= (ato)/(ate/p)

For a>0 this is not a straight, but a curve that grows and then
flattens out to a constant (a+c)/a

Plotting Data: Summary

m Visually, a straight line conveys the most information.

If your data is not linear, massage it so that is linear, then deduce
the original function.

B [f y=£(x) is polynomial: log y 1s linear with log x
y=f(x)=a,+a,x+---+ax" =ax" (asymptotically)
log y=1og a, +nlog x

m [f y={(x) is exponential: log y is linear with x
y=f(x)=ba
log y=1og b+ x(log a)

B [n the case of T(p) = a + c¢/p, the speedup is
SE)=TM)/T(p)= (ato)/(ate/p)

