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Phenomena 

n  Physics: heat, flow, space, time 

n  Mathematics: continuous functions, (partial) 
differential equations 

n  Computer science: Discrete simulation of  
    physical phenomena through  
               Finite Difference Methods 
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Differentials 
n  Physical phenomena like the flow of heat are modeled 

with differentials: 
 
 
n  A differential describes rate of change, e.g. velocity 
   is the rate of change of position, v = df/dx,  and 
   acceleration is the rate of change of velocity, a = dv/dx, 
   which is the second derivative (the derivative of the  
   derivative of position) 
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Partial Differential Equations 

n  Partial differential equations are differential 
equations in higher dimensions expressed in a  
coordinate system, e.g in 2D: 

 
    describe the change of u in the x and y direction. 
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Laplace 
n  Laplace described physical  phenomena in 2 and 3D, 

e.g. heat in 2D 

n  In X direction: cell receives heat VxΔy, loses heat 
(Vx+ΔVx) Δy,  hence ΔVx Δy  heat removed 

n  Similarly, in Y direction: ΔVy Δx  heat removed  
CS475 lecture 9 

Vx 

Vy 

Vy + ΔVy 

Vx + ΔVx 
Δy 
Δx 



trick 
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ΔVxΔy = ΔVx
Δx

ΔxΔy→ ∂Vx
∂x

ΔxΔy

ΔVyΔx = ΔVy
Δy

ΔxΔy→ ∂Vy
∂y

ΔxΔy

Combined  loss : (∂Vx
∂x

+
∂Vy
∂y
)ΔxΔy



More tricks 
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Heat conservation law: 

Feynman:  heat flows at a rate  
proportional to the temperature 
(u) gradient 
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heat 

n  Heat at boundary known 
n  What is the heat inside? 
n  Discretize it 

n  uc = u(x,y), un = u(x,y+h), us = u(x,y-h),  
                       ue = u(x+h,y), uw = u(x-h,y)   
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Taylor series: function approximation 

We can express a function in terms of its derivatives,  
The more derivatives the closer (at least that was the 

wisdom until chaos got discovered (Pointcare)). 
 
  f(x+h) = f(x) +  
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Taylor approximation 

         ue = u(x+h,y) = uc+  
  
         uw = u(x-h,y) = uc-  
         
         ue+ uw = 2uc+      
 
         ue + uw + us + un = 4uc+         + 
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  Taylor + Heat conservation 
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uc = (un +us +ue +uw ) / 4

Thermal equilibrium: temperature at (x,y) is  
   average of surrounding temperatures 

 Taylor: ue + uw + us + un = 4uc+             + 
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Heat conservation: 
 
 
 
              therefore: 



Solving the heat equation 
n  nxn grid: we could have a direct solution 

n  nxn equations with nxn unknowns 
n  Too Complex! 

n  iterative solution: relaxation 
n  Keep doing                                                            at 

every point until equilibrium reached 

n  Jacobi version: ping pong with two arrays 
n  Nice parallelism, slow convergence 

n  Gauss-Seidel: one array, use latest version 
n  More complex data dependence, faster convergence 
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CS view 

n  Nearest neighbor computation, checkerboard or 
block row partitioning 

n  Exchange of data along borders 
n  Trick: overlapping areas (see e.g. Quinn Ch. 13) 

n  Re-computation 
n  Reduced communication frequency 
n  Potentially more complicated communication pattern 
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Integration 

n  Differentiation: finding rate of change in f(x) 

n  Integration: finding surface under f(x) 
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Integration 
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Numerical integration 

n  Approximate f(x) and derive simple formula for 
integral 
n  Linear: two points, quadratic: three, etc. 
n  Two approaches: open vs, closed:  
       open:  points don’t include a and b 
       closed: points include a and b 
     different math 

n  Approximate in a number of intervals 
n  Applying any form of above approximation methods 
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Trapezoidal rule 

n  I  ~ (b-a).((f(a)+f(b))/2) 
n  Intervals: x0, x1= x0+h, x2= x0+2h, …. Xn,  h = (b-a)/n 
     
     I ~ h( (f(x0)+f(x1))/2  +  … + ((f(xn-1)+f(xn)/2)) 
        
        
       =  
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Better approximations 

n  Either: more points  (increase n) 
n  or higher order polynomials 

n  E.g. Simpsons rule uses quadratic approximation over 3 points 
       
       I =                                                       
 
n  Intervals:   
                 I= 
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Iterative / adaptive approach 

n  Iterate  with smaller and smaller segments 
     until Ii~ Ii+1 

       h1=(b-a)/n      h2etc. = (h1)/2   etc. 
n  Error: use relative error 
       
 
 
     n: number of significant digits   
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Recursive approach: adaptive quadrature 
trap(left,right) = { return (right-left)*(f(left)+f(right))/2;} 
tol = (0.5*exp(10,2-n)); 
area(left,right,est) ={ 
   mid=(left+right)/2; 
   a1=trap(left,mid); a2=trap(mid,right); 
   newest = a1+a2; 
   if(abs((newest-est)/newest)<tol) 
      return newest; 
   else return area(left,mid,a1) +area(mid,right,a2) 
} 
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