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i Phenomena

= Physics: heat, flow, space, time

= Mathematics: continuous functions, (partial)
differential equations

s Computer science: Discrete simulation of
physical phenomena through
Finite Difference Methods
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Ditterentials

= Physical phenomena like the flow of heat are modeled
with differentials:

af

Y _1; J(x+Ax) - f(x)
dx_gcgol

Ax

= A differential describes rate of change, e.g. velocity
is the rate of change of position, v = df/dx, and
acceleration 1s the rate of change of velocity, a = dv/dx,
which 1s the second derivative (the derivative of the

derivative of position)
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i Partial Differential Equations

s Partial differential equations are differential
equations in higher dimensions expressed 1n a
coordinate system, €.g 1in 2D:

0 0
—uand—u

0x 0y

describe the change of u in the x and y direction.
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i Laplace

» Laplace described physical phenomena in 2 and 3D,
¢.g. heat in 2D

Ny + Avy

Vx Vx + AVx
AX
Tvy

s In X direction: cell receives heat VxAy, loses heat
(Vx+AVX) Ay, hence AVx Ay heat removed

= Similarly, in Y direction: AVy Ax heat removed
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i trick
AVx oVx

AVyAx = &AXAy —> mAxAy
Ay dy

oVx . avy)AxAy

Combined loss : (
ox 0y
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i More tricks

Heat conservation law:

dbx . vy _0
0X dy

Feynman: heat flows at a rate Ox
proportional to the temperature ou
(u) gradient Vy = -k—

0°u  9’u

These two combined: ——+——=()

x>y’
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i heat

= Heat at boundary known
= What is the heat inside? ()

s Discretize it [p
wicle

S

= U, = Uu(x,y), u, = u(x,y+h), ug = u(x,y-h),
u, = u(xth,y), u, = u(x-h,y)
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i Taylor series: function approximation

We can express a function in terms of its derivatives,

The more derivatives the closer (at least that was the
wisdom until chaos got discovered (Pointcare)).

fcth) = ) + S % £
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Taylor approximation

lhzau

— h
u, = u(xth,y) =u_+ FolLiew

B B ou 28u
Uy = U(X-h,}’) — U.- h Ix + 2h o’

d°u
— 2
utu,=2ut

ax

0°u , 97U
_ 2
ue+uw+us+un—4uc+h g—l_h 8y2
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Taylor + Heat conservation

9’ 9’
Taylor: u, +u, +u, +u =4u+ = + p? 2
ox ay’

0’u  0°u

Heat conservation: ——+——=1()

x> 0y’

therefore: U, =(u, +u +u,+u )/ 4

Thermal equilibrium: temperature at (x,y) is
average of surrounding temperatures
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Solving the heat equation

= nxn grid: we could have a direct solution
= nxn equations with nxn unknowns
= Too Complex!
= 1terative solution: relaxation
= Keepdoing U, = (un +U +Uu, +MW)/4 at
every point until equilibrium reached

= Jacobi version: ping pong with two arrays

= Nice parallelism, slow convergence

= Gauss-Seidel: one array, use latest version
= More complex data dependence, faster convergence
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CS view

= Nearest neighbor computation, checkerboard or
block row partitioning

= Exchange of data along borders

= Trick: overlapping areas (see €.g. Quinn Ch. 13)

= Re-computation
= Reduced communication frequency

= Potentially more complicated communication pattern
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Integration

= Differentiation: finding rate of change 1n {(x)

n dy n—1
=x", —=nx
Y dx
dy dz dw
y=z+Ww, =
dx dx dx
dy dz dw
y=zw, —=WwW—+z——
X dx dx
y=u/v, d—y=(vﬂ—uﬂ)/v2
x dx x

= Integration: finding surface under {(x)
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* Integration

jjf(x)dx = F(b)-F(a) where F'(x)= f(x)

bn+1 _an+1
fx”dx =
a n+1
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i Numerical integration

s Approximate f(x) and derive simple formula for
integral
= Linear: two points, quadratic: three, etc.
= Two approaches: open vs, closed:
open: points don’ t include a and b
closed: points include a and b
different math

= Approximate in a number of intervals

= Applying any form of above approximation methods
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i Trapezoidal rule

= [ ~(b-a).((f(a)+f(b))/2)
s Intervals: x,, X;= X,th, x,= xy+2h, .... X h=(b-a)/n

[~h( (f(xo)H(x))/2 + ...+ ((H(x,)H(x,)/2))

) +23 () + £ (x,)
2n

— (b-a)
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i Better approximations

= Either: more points (increase n)

= or higher order polynomials

= E.g. Simpsons rule uses quadratic approximation over 3 points

- g(f(xo)+4f(xl)+f(xz))

= Intervals:
I:

b3‘na (f (%) + 41:25" T 2i=§6f(x» R
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i Iterative / adaptive approach

m Iterate with smaller and smaller segments
until I~ L.,
h,=(b-a)/n  h,,. =(h,)/2 etc.

» Error: use relative error

present approx — previous approx
E =

r

.100%

present approx

<(0.5%10"")%
n: number of significant digits
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i Recursive approach: adaptive quadrature

trap(left,right) = { return (right-left)*(f(left)+f(right))/2;}
tol = (0.5*exp(10,2-n));
area(left,right,est) ={

mid=(left+right)/2;

al=trap(left,mid); a2=trap(mid,right);

newest = al+a2;

if(abs((newest-est)/newest)<tol)

return newest;

else return area(left,mid,al) +area(mid,right,a2)

b
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