CS475 Parallel Programming

Differentiation and Integration Wim Bohm

Colorado State University

Phenomena

- Physics: heat, flow, space, time
- Mathematics: continuous functions, (partial) differential equations
- Computer science: Discrete simulation of physical phenomena through

Finite Difference Methods

Differentials

- Physical phenomena like the flow of heat are modeled with differentials:

$$
\frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- A differential describes rate of change, e.g. velocity is the rate of change of position, $\mathrm{v}=\mathrm{df} / \mathrm{dx}$, and acceleration is the rate of change of velocity, $a=d v / d x$, which is the second derivative (the derivative of the derivative of position)

Partial Differential Equations

- Partial differential equations are differential equations in higher dimensions expressed in a coordinate system, e.g in 2D:

$$
\frac{\partial u}{\partial x} \text { and } \frac{\partial u}{\partial y}
$$

describe the change of u in the x and y direction.

Laplace

- Laplace described physical phenomena in 2 and 3D, e.g. heat in 2D

$$
\begin{aligned}
& \hat{V y}+\Delta V y
\end{aligned}
$$

- In X direction: cell receives heat $V x \Delta y$, loses heat $(\mathrm{Vx}+\Delta \mathrm{Vx}) \Delta \mathrm{y}$, hence $\Delta \mathrm{Vx} \Delta \mathrm{y}$ heat removed
- Similarly, in Y direction: $\Delta \mathrm{Vy} \Delta \mathrm{x}$ heat removed

trick

$\Delta V x \Delta y=\frac{\Delta V x}{\Delta x} \Delta x \Delta y \rightarrow \frac{\partial V x}{\partial x} \Delta x \Delta y$
$\Delta V y \Delta x=\frac{\Delta V y}{\Delta y} \Delta x \Delta y \rightarrow \frac{\partial V y}{\partial y} \Delta x \Delta y$

Combined loss : $\left(\frac{\partial V x}{\partial x}+\frac{\partial V y}{\partial y}\right) \Delta x \Delta y$

More tricks

Heat conservation law: $\quad \frac{\partial V x}{\partial x}+\frac{\partial V y}{\partial y}=0$
Feynman: heat flows at a rate $V x=-k \frac{\partial u}{\partial x}$ proportional to the temperature
(u) gradient

$$
V y=-k \frac{\partial u}{\partial y}
$$

These two combined: $\quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$

heat

- Heat at boundary known
- What is the heat inside?
- Discretize it

- $\mathrm{u}_{\mathrm{c}}=\mathrm{u}(\mathrm{x}, \mathrm{y}), \mathrm{u}_{\mathrm{n}}=\mathrm{u}(\mathrm{x}, \mathrm{y}+\mathrm{h}), \mathrm{u}_{\mathrm{s}}=\mathrm{u}(\mathrm{x}, \mathrm{y}-\mathrm{h})$,

$$
\mathrm{u}_{\mathrm{e}}=\mathrm{u}(\mathrm{x}+\mathrm{h}, \mathrm{y}), \mathrm{u}_{\mathrm{w}}=\mathrm{u}(\mathrm{x}-\mathrm{h}, \mathrm{y})
$$

Taylor series: function approximation

We can express a function in terms of its derivatives,
The more derivatives the closer (at least that was the wisdom until chaos got discovered (Pointcare)).

$$
\mathrm{f}(\mathrm{x}+\mathrm{h})=\mathrm{f}(\mathrm{x})+\sum_{i=1}^{k} \frac{1}{i!} f^{i}(x)
$$

Taylor approximation

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{e}}=\mathrm{u}(\mathrm{x}+\mathrm{h}, \mathrm{y})=\mathrm{u}_{\mathrm{c}}+h \frac{\partial u}{\partial x}+\frac{1}{2} h^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
& \mathrm{u}_{\mathrm{w}}=\mathrm{u}(\mathrm{x}-\mathrm{h}, \mathrm{y})=\mathrm{u}_{\mathrm{c}}-h \frac{\partial u}{\partial x}+\frac{1}{2} h^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
& \mathrm{u}_{\mathrm{e}}+\mathrm{u}_{\mathrm{w}}=2 \mathrm{u}_{\mathrm{c}}+h^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
& \mathrm{u}_{\mathrm{e}}+\mathrm{u}_{\mathrm{w}}+\mathrm{u}_{\mathrm{s}}+\mathrm{u}_{\mathrm{n}}=4 \mathrm{u}_{\mathrm{c}}+h^{2} \frac{\partial^{2} u}{\partial x^{2}}+h^{2} \frac{\partial^{2} u}{\partial y^{2}}
\end{aligned}
$$

Taylor + Heat conservation

Taylor: $\mathrm{u}_{\mathrm{e}}+\mathrm{u}_{\mathrm{w}}+\mathrm{u}_{\mathrm{s}}+\mathrm{u}_{\mathrm{n}}=4 \mathrm{u}_{\mathrm{c}}+h^{2} \frac{\partial^{2} u}{\partial x^{2}}+h^{2} \frac{\partial^{2} u}{\partial y^{2}}$
Heat conservation: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
therefore: $\quad u_{c}=\left(u_{n}+u_{s}+u_{e}+u_{w}\right) / 4$
Thermal equilibrium: temperature at (\mathbf{x}, \mathbf{y}) is average of surrounding temperatures

Solving the heat equation

- nxn grid: we could have a direct solution
- nxn equations with nxn unknowns
- Too Complex!
- iterative solution: relaxation
- Keep doing $u_{c}=\left(u_{n}+u_{s}+u_{e}+u_{w}\right) / 4$ at every point until equilibrium reached
- Jacobi version: ping pong with two arrays
- Nice parallelism, slow convergence
- Gauss-Seidel: one array, use latest version
- More complex data dependence, faster convergence

CS view

- Nearest neighbor computation, checkerboard or block row partitioning
- Exchange of data along borders
- Trick: overlapping areas (see e.g. Quinn Ch. 13)
- Re-computation
- Reduced communication frequency
- Potentially more complicated communication pattern

Integration

- Differentiation: finding rate of change in $f(x)$

$$
\begin{aligned}
& y=x^{n}, \quad \frac{d y}{d x}=n x^{n-1} \\
& y=z+w, \quad \frac{d y}{d x}=\frac{d z}{d x}+\frac{d w}{d x} \\
& y=z \cdot w, \quad \frac{d y}{d x}=w \frac{d z}{d x}+z \frac{d w}{d x} \\
& y=u / v, \quad \frac{d y}{d x}=\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right) / v^{2}
\end{aligned}
$$

- Integration: finding surface under $\mathrm{f}(\mathrm{x})$

Integration

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=F(b)-F(a) \text { where } F^{\prime}(x)=f(x) \\
& \int_{a}^{b} x^{n} d x=\frac{b^{n+1}-a^{n+1}}{n+1}
\end{aligned}
$$

Numerical integration

- Approximate $\mathrm{f}(\mathrm{x})$ and derive simple formula for integral
- Linear: two points, quadratic: three, etc.
- Two approaches: open vs, closed: open: points don' t include a and b closed: points include a and b different math
- Approximate in a number of intervals
- Applying any form of above approximation methods

Trapezoidal rule

- I ~ (b-a). ((f(a)+f(b))/2)
- Intervals: $x_{0}, x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \ldots . X_{n,} h=(b-a) / n$

$$
\begin{aligned}
\mathrm{I} & \sim \mathrm{~h}\left(\left(\mathrm{f}\left(\mathrm{x}_{0}\right)+\mathrm{f}\left(\mathrm{x}_{1}\right)\right) / 2+\ldots+\left(\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{n}-1}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right) / 2\right)\right)\right. \\
& =\quad(b-a) \frac{f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)}{2 n}
\end{aligned}
$$

Better approximations

- Either: more points (increase n)
- or higher order polynomials
- E.g. Simpsons rule uses quadratic approximation over 3 points

$$
\mathrm{I}=\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

- Intervals:

$$
\mathrm{I}=\frac{b-a}{3 n}\left(f\left(x_{0}\right)+4 \sum_{i=1,3,5 . .}^{n-1} f\left(x_{i}\right)+2 \sum_{i=2,4,6 . .}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right)
$$

Iterative / adaptive approach

- Iterate with smaller and smaller segments until $\mathrm{I}_{\mathrm{i}} \sim \mathrm{I}_{\mathrm{i}+1}$

$$
\mathrm{h}_{1}=(\mathrm{b}-\mathrm{a}) / \mathrm{n} \quad \mathrm{~h}_{2 \text { etc. }}=\left(\mathrm{h}_{1}\right) / 2 \quad \text { etc. }
$$

- Error: use relative error

$$
\begin{aligned}
\varepsilon_{r} & =\frac{\text { present approx }- \text { previous approx }}{\text { present approx }} .100 \% \\
& \leq\left(0.5 * 10^{2-n}\right) \%
\end{aligned}
$$

n : number of significant digits

Recursive approach: adaptive quadrature

```
trap(left,right) = { return (right-left)*(f(left)+f(right))/2;}
tol = (0.5*exp(10,2-n));
area(left,right,est) = {
    mid=(left+right)/2;
    a1=trap(left,mid); a2=trap(mid,right);
    newest = a1+a2;
    if(abs((newest-est)/newest)<tol)
        return newest;
    else return area(left,mid,a1) +area(mid,right,a2)
}
```

