
CS475 Parallel Programming

Sorting
Wim Bohm, Colorado State University

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

2

Sorting Problem
n  Sorting

n  Input: sequence S = (a0,a1,…,an-1)
n  Output: (b0,b1,…,bn-1) = permutation of S s.t. bi <= bi+1

n  Sorting Algorithm Categories
n  Internal sorting: S is small enough to fit in memory/network

n  We concentrate on this
n  External sorting: S partly stored on external device (disk)
n  Comparison sorting: Uses compares and exchanges

n  Ω(n log(n)) work
n  Non comparison sorting: Uses extra information about input data

n  Values lie in a small range (Radix Sort)
n  S is permutation of (1 .. N) (Pigeon hole sort)
n  Sometimes Ω(n) work

3

Storage for Input and Output
n  Input sequence

n  Distributed in equal blocks over processors unless specified
otherwise

n  Output sequence
n  Distributed over p processors unless specified otherwise
n  Ordering of blocks S1 and S2

n  S1 ≤ S2 iff ∀ s1∈S1, ∀ s2∈S2: s1 ≤ s2

n  requires enumeration of PEs
n  e.g. on hypercube: PE bit label or Gray code

n  Sorted output
n  PEi < PEj (according to enumeration) ⇒ block(PEi) ≤ block(PEj)

4

Discussion: Parallel Merge Sort

n  A pipeline of sorters S0, S1 …. Sn
n  S0:

n  One input stream, two output streams
n  reads input stream and creates “sorted” subsequences of size 1
n  sends the subsequences to its outputs (alternating between the two)

n  Si: (i = 1 .. n-1)
n  Two input streams, two output streams
n  merges sorted subsequences from two input streams
n  sends double-sized, merged subsequences to its outputs (again alternating)

n  Sn:
n  Two input streams, one output stream
n  merges sorted subsequences from two inputs into one result

5

Parallel Merge Sort (cont.)

Questions:
1.  Given n = 2m input numbers, how many sorters are needed?
2.  If a sorter can read one number in one time step, write one
 number in one time step, and store and compare in zero time
 steps, how many time steps does it take to sort n numbers?
3.  Is this algorithm cost optimal?

S0 S1 S2 S3
7 2 3 1 5 6 4 8 8 7 6 5 4 3 2 1

2 | 1 | 6 | 8

7 | 3 | 5 | 4

3 1 | 8 4

7 2 | 6 5

8 6 5 4

7 3 2 1

6

Compare Exchange, Compare Split
n  Compare exchange: n = p

n  Ascending (+)
n  descending (-)

n  Compare split: n > p
n  Pi and Pj have blocks of data
n  Merge the two blocks
n  Pi gets lower half, Pj gets upper half

+

+

x

y

min{x,y}

max{x,y}

-

-

x

y

max{x,y}

min{x,y}

+

+

1 6 8 11 13

2 7 9 10 12

1 2 6 7 8

9 10 11 12 13

Sorting networks
n  n numbers, n lines, M stages
n  Each stage:

n  <= n/2 compare-exchanges
n  Each compare exchange computes in O(1) time

n  time complexity: M
n  Cost: M*n
n  does this network sort?

+

+

+

+

+

+

+

+

+

+

+

+

7

8

Bitonic Sequence

n  A sequence A = a0, a1, … , an-1 is bitonic iff
 1. There is an index i, 0 < i < n, s.t.
 a0.. ai is increasing
 and
 ai .. an-1 is decreasing

 or 2. There is a cyclic shift of A for which 1 holds.

Why called BItonic?

9

Bitonic Split

n  A bitonic split divides a bitonic sequence in two:

 S1= (min(bs0,bsn/2), min(bs1,bsn/2+1), .. , min(bsn/2-1,bsn-1))
 BitSplit(BS)=
 S2 = (max(bs0,bsn/2), max(bs1,bsn/2+1), .. , max(bsn/2-1,bsn-1))

n  Theorem :
 S1 and S2 are both bitonic and S1 < S2
 Proof:
 By consideration of all cases

10

Bitonic Merge

n  Given: a Bitonic Sequence BS of size n = 2m

n  Sort BS using m (parallel) Bitonic Split stages

+
+

+
+

+

+
+

+

+
+

+
+

+

+
+

+

+
+
+
+

+

+
+
+

1

3

5

7

8

6

4

2

1

3

4

2

8

6

5

7

1

2

4

3

5

6

8

7

1

2

3

4

5

6

7

8

11

Bitonic merge=log(n) bitonic split stages

n  Can sort a bitonic sequence in log(n) steps
n  Increasing order: +BM(n)

n  use + compare exchangers
n  Decreasing order: -BM(n)

n  use - compare exchangers

12

Bitonic Sort

n  Each 2 element subsequence is bitonic
n  Merging 2 element subsequences, up and down,

creates bitonic subsequences of size 4
n  Merging 2 elements up: +BM2
n  Merging 2 elements down: -BM2

n  Merging these 4 sized subsequences up (+BM4)
and down (-BM4) creates bitonic subsequences of
size 8

n  and so on......

13

Bitonic sort = log(n) bitonic merge stages

+BM2

-BM2

+BM2

-BM2

+BM4

 -BM4

+BM8

Bitonic Sort network

14

 + -

15

Bitonic sort: time and work

n  Time: O(log2(n))
 Number of stages:
 B2+B4+B8+…+B2m = 1 + 2 + 3 + .. + m
 where m = log(n)

n  Work: O(n log2(n))
 O(n) per stage

Sorting: Parallel Compare Split Operation

A compare-split operation. Each process sends its block of size n/p to
the other process. Each process merges the received block with its

own block and retains only the appropriate half of the merged block.
In this example, process Pi retains the smaller elements and process

Pi retains the larger elements.

Mapping Bitonic Sort to Hypercubes
n  Consider the case of one item per processor. The

question becomes one of how the wires in the bitonic
network should be mapped to the hypercube
interconnect.

n  Note from our earlier examples that the compare-
exchange operation is performed between two wires only
if their labels differ in exactly one bit!

n  This implies a direct mapping of wires to processors. All
communication is nearest neighbor!

Mapping Bitonic Sort to Hypercubes

Communication during the last stage of bitonic sort.
Each wire is mapped to a hypercube process; each

connection represents a compare-exchange between
processes.

Mapping Bitonic Sort to Hypercubes

Communication characteristics of bitonic sort on a hypercube. During
each stage of the algorithm, processes communicate along the

dimensions shown.

Mapping Bitonic Sort to Hypercubes

Parallel formulation of bitonic sort on a hypercube with n = 2d processes.

Mapping Bitonic Sort to Hypercubes

n  During each step of the algorithm, every process
performs a compare-exchange operation (single
nearest neighbor communication of one word).

n  Since each step takes Θ(1) time, the parallel time
is

 Tp = Θ(log2n) (2)

n  This algorithm is cost optimal w.r.t. its serial
counterpart, but not w.r.t. the best sorting
algorithm.

Mapping Bitonic Sort to Meshes

n  The connectivity of a mesh is lower than that of a
hypercube, so we must expect some overhead in
this mapping.

n  Consider the row-major shuffled mapping of wires
to processors.

Mapping Bitonic Sort to Meshes

Different ways of mapping the input wires of the bitonic
sorting network to a mesh of processes: (a) row-major
mapping, (b) row-major snakelike mapping, and (c)

row-major shuffled mapping.

Mapping Bitonic Sort to Meshes

The last stage of the bitonic sort algorithm for n = 16 on
a mesh, using the row-major shuffled mapping.

During each step, process pairs compare-exchange
their elements. Arrows indicate the pairs of processes

that perform compare-exchange operations.

Mapping Bitonic Sort to Meshes
n  In the row-major shuffled mapping, wires that differ

at the ith least-significant bit are mapped onto mesh
processes that are 2⎣(i-1)/2⎦ communication links away.

n  The total amount of communication performed by
each process is . The total
computation performed by each process is Θ(log2n).

n  The parallel runtime is:

n  This is not cost optimal.

⎣ ⎦)(or ,72log

1 1
2/)1(nnn

i

i

j
j Θ≈∑ ∑= =

−

Block of Elements Per Processor

n  Each process is assigned a block of n/p elements.

n  The first step is a local sort of the local block.

n  Each subsequent compare-exchange operation is
replaced by a compare-split operation.

n  We can effectively view the bitonic network as
having (1 + log p)(log p)/2 steps.

Block of Elements Per Processor: Hypercube

n  Initially the processes sort their n/p elements (using merge
sort) in time Θ((n/p)log(n/p)) and then perform Θ(log2p)
compare-split steps.

n  The parallel run time of this formulation is

n  Comparing to an optimal sort, the algorithm can efficiently use
up to processes.

n  The isoefficiency function due to both communication and
extra work is Θ(plog plog2p) .

)2(lognp Θ=

Block of Elements Per Processor: Mesh

n  The parallel runtime in this case is given by:

n  This formulation can efficiently use up to p =
Θ(log2n) processes.

n  The isoefficiency function is

Performance of Parallel Bitonic Sort

The performance of parallel formulations of bitonic sort
for n elements on p processes.

30

Bitonic Sort on Mesh

n  No ideal mapping; best: nearest = most used

 0000 -- 0001 0100 -- 0101
 | | | |
 0010 -- 0011 0110 -- 0111

 1000 -- 1001 1100 -- 1101
 | | | |
 1010 -- 1011 1110 -- 1111

Distance 1: used 7 times, Distance 2: used 3 times

31

Bitonic Sort n > p

n  n/p elements per PE

n  Do local sorts at the beginning

n  Use compare-split instead of compare-exchange

n  Perfect load balance

32

Parallel Bubble Sort

 Odd-Even sort:
n  sorts n elements in n/2 phases
n  Each phase has two stages

n  first stage compares even element with next element
n  second stage compares odd element with next

n  O(n) time, O(n2) work

33

Count/Radix/Bucket family

n  Enumeration Sort
n  Determine rank of every element
n  Sort A[0..n-1], using counters C[0..n-1]

 forall i in 0..n-1 C[i]=0
 forall i in 0..n-1, forall j in 0..n-1
 if A[i]<A[j] or (A[i]==A[j] and i<j) C[j]++
 forall i in 0..n-1 S[C[i]]=A[i]

34

Count sort: large number of small numbers

n  n numbers in range 0..r-1
n  n >> r

 forall i in 0..r C[i]=0
 forall i in 0..n-1 C[A[i]+1]++
 PPC = ParallelPrefixSum(C)
 forall i in 0..n-1 S[PPC[A[i]]++]=A[i]

n  One of the fastest sorts for this case

Partial sums, or Parallel Prefix

N numbers V1 to Vn stored in A[1] to A[n]
Compute all partial sums (V1+..+Vk)

 d = 1
 do log(n) times
 for all i in 1..n:
 if (i-d)>0 A[i] = A[i]+A[i-d]
 d *= 2

35

