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Minimal Spanning Tree (MST) 

n  Spanning tree of an undirected graph G 
n  A tree that is a sub-graph of G containing ALL vertices 

n  Minimal spanning tree of a weighted graph G 
n  Spanning tree with minimal total weight 

n  G must be a connected graph 
n  Applications 

n  Lowest cost set of roads connecting a set of towns 
n  Shortest cable connecting a set of computers  
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Prim’s Algorithm for MST 

n  Pick an arbitrary vertex 
n  Grow MST by choosing a new vertex v and edge e  

n  such that they are guaranteed to be in the final, correct MST 
n  Select least-cost (minimal) edge e(u,v) such that  

n  u is already in MST 
n  v is not in MST as yet 

n  Keep doing this until all vertices are in MST 
n  This is a GREEDY algorithm 

n  a locally optimizing strategy leading to a global optimum 
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Properties of any tree hence MST 

n  Path between two nodes a and b in MST is unique 
n  Cycles in MST 

n  there are no cycles 
n  If a and b are non-adjacent, adding the edge (a,b) creates a cycle 
n  Removing any edge on that cycle makes it a tree again 
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How greedy works for MST 

n  Consider each stage M with partial MST 
n  Add the least-cost edge to M to obtain the next stage M’ 
n  The resulting MST will be minimal. 

n  Exchange Argument 
n  Suppose we can create an MST by not taking the minimal cost 

edge 
n  Call the minimal edge e,  and the non-minimal edge taken e’ 
n  Build the rest of the spanning tree 
n  We can now make a lower cost spanning tree by removing e’ and 

adding e 
n  Hence the spanning tree  with e’ in it was not minimal 
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Prim’s Algorithm Code Structure 
 // Pick vertex r and initialize Vt, Et,  d and e 
 Vt = { r } ; Et = { }       // MST in construction 

  d[r] = 0 ;  // d is a heap 
     ∀ v ∈ V if ((r,v) ∈ E)  { d[v] = w(r,v) ; e[v] = r ; }  
                   else d[v] = ∞ ; 
    // grow the MST 
    while Vt != V  

  Select vertex u from V-Vt with minimal d[u] ; 
      Vt = Vt + u;   Et = Et + (u,e[u]) ;  
            // update d and e 
      ∀ v ∈ V-Vt if (w(u,v) < d[v]) d[v]=w(u,v);e[v]=u 
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Complexity, parallelization of Prim 

n  while-loop executed n-1 times 
n  Loop-body O(n)  if  arrays are used 
n  Sequential complexity: O(mlogn) 
n  while-loop is sequential in nature, because of the 

data dependencies in Vt, Et, d and e 
n  ∀ loops can be parallelized 
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Parallel Implementation of Prim 
n  Data distribution 

n  Each PE has data for n/p vertices 
n  Adjacency matrix A is block striped (column-wise) 
n  d and e block striped 

n  PEs compute a local minimum ul 
n  Local minima accumulate to give global minimum in PE0 

n  PE0 broadcasts global minimum ug 

n  PE owning ug updates Vt ,Et 

n  All PEs update their partition of d and e using their 
columns of A 
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Single Source Shortest Path - SSSP 

n  Given a vertex s and weighted graph G, find the shortest 
distances from s to each vertex  

n  Dijkstra’s algorithm (very much like Prim) 
      

  Vt = { s } 
          ∀ v ∈ V-Vt  if ((s,v) ∈ E) l[v] = w(s,v); else l[v] = ∞; 

   while Vt != V 
              Select vertex u from V-Vt with minimal l[u] 
                  Vt = Vt + u  
                  ∀ v ∈ V-Vt  l[v] = min(l[v], l[u]+w(u,v)) 
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Parallel SSSP 
n  Very similar to Prim 
n  Data distribution 

n  n/p vertices per PE 
n  Column distribute A 
n  block distribute l 

n  Find minimal ul locally 
n  Accumulate to obtain global minimum ug 

n  Broadcast global minimum ug 

n  Every PE updates its l block using its column-block of A 
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All pairs shortest paths - APSP 

n  Find length of shortest path between all vertex 
pairs 
n  n*n distance matrix D: Dij is shortest distance for vi à vj 

n  Algorithm: Floyd’s APSP 
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Dynamic Programming approach 
n  Formulate the problem in a recursive fashion 

n  Reverse this formulation to create a BOTTOM UP solution 
n  Use solutions for smaller problems to create solutions for larger ones 

n  There can be multiple recursive formulations 
n  Recurrence on path length (Matrix Multiply formulation) 
n  Recurrence on node set (Floyd’s algorithm) 

  



13 

Floyd’s APSP 
n  Terms used 

n  node (sub)set Vk = {v1, v2, ..... , vk} 
n  Pij

k = minimal length path from vi to vj passing through nodes in Vk 
n  dij

k = length of the path Pij
k 

n  Recursion: based on node sets 
n  Two possibilities: vk in Pij

k  or not 
n  vk not in Pij

k:  Pij
k = Pij

k-1                 and     dij
k = dij

k-1 
n  vk in Pij

k:        Pij
k = Pik

k-1 + Pkj
k-1     and     dij

k = dik
k-1 + dkj

k-1   
n  dij

k = min(dij
k-1, dik

k-1 + dkj
k-1)       for k > 0 

           = w(vi, vj)                               for k = 0 
n  Solution D = Dn 



14 

Floyd’s APSP (Sequential) 
 

  D0 = A 
      for k = 1 to n 
            for i = 1 to  n 
                   for j = 1 to n 
                          Dij

k = min(Dij
k-1 , Dik

k-1 + Dkj
k-1) 

 
   O(n3) sequential time complexity 
   O(n2) space complexity 
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Floyd Parallel 
n  Mesh checkerboard partitioning 
n  Iteration k: Broadcast k-th row and k-th column of D 

     for k = 1 to n 
          each PE having a segment of row k of Dk-1 broadcast it in its column  
          each PE having a segment of column k of Dk-1 broadcasts it in its row      
          each PE waits to receive the needed segments of Dk-1  
          each PE  computes its part of Dk 

n  Note that this algorithm can be pipelined like Gaussian 
elimination or LUD 



Floyd Parallel: update in place 

n  In the kth iteration 
n  Dik and Dkj  are broadcast and do not 

change 
n  other elements Dij depend on  Dik and Dkj  

and themselves (no other elements depend 
on Dij) 

 
      So there are no data hazards, and all 
      elements can be updated in place 
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Transitive Closure 
n  Given: graph G=(V,E) 
     Transitive closure: G*=(V,E*) 

n  E* = {(v1,v2) | ∃ path from v1 to v2 in G} 

n  Connectivity matrix A* 
n  Aij

* = 1     if (vi,vj) in E* or i = j 
           = 0  otherwise 
 

n  Use Floyd 
n  replacing min by or and sum by and 


