

Shortest Paths Wim Bohm, Colorado State University

Minimal Spanning Tree (MST)

- Spanning tree of an undirected graph G
 - A tree that is a sub-graph of G containing ALL vertices
- Minimal spanning tree of a weighted graph G
 - Spanning tree with minimal total weight
- G must be a connected graph
- Applications
 - Lowest cost set of roads connecting a set of towns
 - Shortest cable connecting a set of computers

- Pick an arbitrary vertex
- Grow MST by choosing a new vertex v and edge e
 - such that they are guaranteed to be in the final, correct MST
 - Select least-cost (minimal) edge e(u,v) such that
 - u is already in MST
 - v is not in MST as yet
- Keep doing this until all vertices are in MST
- This is a GREEDY algorithm
 - a locally optimizing strategy leading to a global optimum

Properties of any tree hence MST

- Path between two nodes a and b in MST is unique
- Cycles in MST
 - there are no cycles
 - If a and b are non-adjacent, adding the edge (a,b) creates a cycle
 - Removing any edge on that cycle makes it a tree again

- Consider each stage M with partial MST
 - Add the least-cost edge to M to obtain the next stage M'
 - The resulting MST will be minimal.
- Exchange Argument
 - Suppose we can create an MST by not taking the minimal cost edge
 - Call the minimal edge e, and the non-minimal edge taken e'
 - Build the rest of the spanning tree
 - We can now make a lower cost spanning tree by removing e' and adding e
 - Hence the spanning tree with e' in it was not minimal

Prim's Algorithm Code Structure

```
// Pick vertex r and initialize V_t, E_t, d and e
V_t = \{ r \} ; E_t = \{ \} // MST in construction
d[r] = 0; // d is a heap
\forall v \in V \text{ if } ((r,v) \in E) \{ d[v] = w(r,v) ; e[v] = r ; \}
           else d[v] = \infty;
// grow the MST
while V_t = V
      Select vertex u from V-V<sub>t</sub> with minimal d[u];
      V_t = V_t + u; E_t = E_t + (u,e[u]);
      // update d and e
      \forall v \in V - V_t \text{ if } (w(u,v) < d[v]) \ d[v] = w(u,v); e[v] = u
```


Complexity, parallelization of Prim

- while-loop executed n-1 times
- Loop-body O(n) if arrays are used
- Sequential complexity: O(mlogn)
- while-loop is sequential in nature, because of the data dependencies in V_t , E_t , d and e
- ¥ loops can be parallelized

- Data distribution
 - Each PE has data for n/p vertices
 - Adjacency matrix A is block striped (column-wise)
 - d and e block striped
- PEs compute a local minimum u₁
- Local minima accumulate to give global minimum in PE₀
- PE₀ broadcasts global minimum u_g
- PE owning u_g updates V_t , E_t
- All PEs update their partition of d and e using their columns of A

- Given a vertex s and weighted graph G, find the shortest distances from s to each vertex
- Dijkstra's algorithm (very much like Prim)

$$\begin{aligned} &V_t = \{ \ s \ \} \\ &\forall \ v \in V\text{-Vt if } ((s,v) \in E) \ l[v] = w(s,v); \ else \ l[v] = \infty; \\ &\text{while } V_t \ != V \\ &\text{Select vertex } u \ from \ V\text{-}V_t \ with \ minimal \ l[u] \\ &V_t = V_t + u \\ &\forall \ v \in V\text{-}V_t \ \ l[v] = min(l[v], \ l[u] + w(u,v)) \end{aligned}$$

Parallel SSSP

- Very similar to Prim
- Data distribution
 - n/p vertices per PE
 - Column distribute A
 - block distribute 1
- Find minimal u₁ locally
- Accumulate to obtain global minimum u_g
- Broadcast global minimum u_g
- Every PE updates its 1 block using its column-block of A

All pairs shortest paths - APSP

- Find length of shortest path between all vertex pairs
 - n*n distance matrix D: Dij is shortest distance for $v_i \rightarrow v_j$
- Algorithm: Floyd's APSP

Dynamic Programming approach

- Formulate the problem in a recursive fashion
- Reverse this formulation to create a BOTTOM UP solution
 - Use solutions for smaller problems to create solutions for larger ones
- There can be multiple recursive formulations
 - Recurrence on path length (Matrix Multiply formulation)
 - Recurrence on node set (Floyd's algorithm)

Floyd's APSP

- Terms used
 - node (sub)set $V_k = \{v_1, v_2,, v_k\}$
 - P_{ij}^{k} = minimal length path from v_i to v_j passing through nodes in V_k
 - d_{ij}^{k} = length of the path P_{ij}^{k}
- Recursion: based on node sets
 - Two possibilities: v_k in P_{ij}^k or not
 - v_k not in P_{ij}^k : $P_{ij}^k = P_{ij}^{k-1}$ and $d_{ij}^k = d_{ij}^{k-1}$
 - v_k in P_{ij}^k : $P_{ij}^k = P_{ik}^{k-1} + P_{kj}^{k-1}$ and $d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1}$
- $d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$ for k > 0= $w(v_i, v_i)$ for k = 0
- Solution $D = D^n$

Floyd's APSP (Sequential)

```
\begin{split} D^0 &= A \\ \text{for } k = 1 \text{ to } n \\ \text{for } i = 1 \text{ to } n \\ \text{for } j = 1 \text{ to } n \\ D_{ij}{}^k &= \min(D_{ij}{}^{k\text{-}1} \ , D_{ik}{}^{k\text{-}1} + D_{kj}{}^{k\text{-}1}) \end{split}
```

O(n³) sequential time complexity

O(n²) space complexity

Floyd Parallel

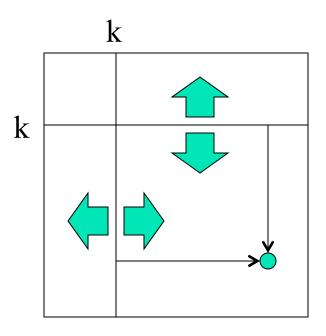
- Mesh checkerboard partitioning
- Iteration k: Broadcast k-th row and k-th column of D

for k=1 to n each PE having a segment of row k of D^{k-1} broadcast it in its column each PE having a segment of column k of D^{k-1} broadcasts it in its row each PE waits to receive the needed segments of D^{k-1} each PE computes its part of D^k

Note that this algorithm can be pipelined like Gaussian elimination or LUD

- In the kth iteration
- $\quad \quad D_{ik} \text{ and } D_{kj} \text{ are broadcast and do not } \\ \text{change}$
- other elements D_{ij} depend on D_{ik} and D_{kj} and themselves (no other elements depend on D_{ij})

So there are no data hazards, and all elements can be updated in place



Transitive Closure

- Given: graph G=(V,E)

 Transitive closure: G*=(V,E*)
 - $E^* = \{(v_1, v_2) \mid \exists \text{ path from } v_1 \text{ to } v_2 \text{ in } G\}$
- Connectivity matrix A*
 - $A_{ij}^* = 1$ if (v_i, v_j) in E* or i = j= 0 otherwise
- Use Floyd
 - replacing min by or and sum by and