
CS475 Parallel Programming

Shortest Paths
Wim Bohm, Colorado State University

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

2

Minimal Spanning Tree (MST)

n  Spanning tree of an undirected graph G
n  A tree that is a sub-graph of G containing ALL vertices

n  Minimal spanning tree of a weighted graph G
n  Spanning tree with minimal total weight

n  G must be a connected graph
n  Applications

n  Lowest cost set of roads connecting a set of towns
n  Shortest cable connecting a set of computers

3

Prim’s Algorithm for MST

n  Pick an arbitrary vertex
n  Grow MST by choosing a new vertex v and edge e

n  such that they are guaranteed to be in the final, correct MST
n  Select least-cost (minimal) edge e(u,v) such that

n  u is already in MST
n  v is not in MST as yet

n  Keep doing this until all vertices are in MST
n  This is a GREEDY algorithm

n  a locally optimizing strategy leading to a global optimum

4

Properties of any tree hence MST

n  Path between two nodes a and b in MST is unique
n  Cycles in MST

n  there are no cycles
n  If a and b are non-adjacent, adding the edge (a,b) creates a cycle
n  Removing any edge on that cycle makes it a tree again

5

How greedy works for MST

n  Consider each stage M with partial MST
n  Add the least-cost edge to M to obtain the next stage M’
n  The resulting MST will be minimal.

n  Exchange Argument
n  Suppose we can create an MST by not taking the minimal cost

edge
n  Call the minimal edge e, and the non-minimal edge taken e’
n  Build the rest of the spanning tree
n  We can now make a lower cost spanning tree by removing e’ and

adding e
n  Hence the spanning tree with e’ in it was not minimal

6

Prim’s Algorithm Code Structure
 // Pick vertex r and initialize Vt, Et, d and e
 Vt = { r } ; Et = { } // MST in construction

 d[r] = 0 ; // d is a heap
 ∀ v ∈ V if ((r,v) ∈ E) { d[v] = w(r,v) ; e[v] = r ; }
 else d[v] = ∞ ;
 // grow the MST
 while Vt != V

 Select vertex u from V-Vt with minimal d[u] ;
 Vt = Vt + u; Et = Et + (u,e[u]) ;
 // update d and e
 ∀ v ∈ V-Vt if (w(u,v) < d[v]) d[v]=w(u,v);e[v]=u

7

Complexity, parallelization of Prim

n  while-loop executed n-1 times
n  Loop-body O(n) if arrays are used
n  Sequential complexity: O(mlogn)
n  while-loop is sequential in nature, because of the

data dependencies in Vt, Et, d and e
n  ∀ loops can be parallelized

8

Parallel Implementation of Prim
n  Data distribution

n  Each PE has data for n/p vertices
n  Adjacency matrix A is block striped (column-wise)
n  d and e block striped

n  PEs compute a local minimum ul
n  Local minima accumulate to give global minimum in PE0

n  PE0 broadcasts global minimum ug

n  PE owning ug updates Vt ,Et

n  All PEs update their partition of d and e using their
columns of A

9

Single Source Shortest Path - SSSP

n  Given a vertex s and weighted graph G, find the shortest
distances from s to each vertex

n  Dijkstra’s algorithm (very much like Prim)

 Vt = { s }
 ∀ v ∈ V-Vt if ((s,v) ∈ E) l[v] = w(s,v); else l[v] = ∞;

 while Vt != V
 Select vertex u from V-Vt with minimal l[u]
 Vt = Vt + u
 ∀ v ∈ V-Vt l[v] = min(l[v], l[u]+w(u,v))

10

Parallel SSSP
n  Very similar to Prim
n  Data distribution

n  n/p vertices per PE
n  Column distribute A
n  block distribute l

n  Find minimal ul locally
n  Accumulate to obtain global minimum ug

n  Broadcast global minimum ug

n  Every PE updates its l block using its column-block of A

11

All pairs shortest paths - APSP

n  Find length of shortest path between all vertex
pairs
n  n*n distance matrix D: Dij is shortest distance for vi à vj

n  Algorithm: Floyd’s APSP

12

Dynamic Programming approach
n  Formulate the problem in a recursive fashion

n  Reverse this formulation to create a BOTTOM UP solution
n  Use solutions for smaller problems to create solutions for larger ones

n  There can be multiple recursive formulations
n  Recurrence on path length (Matrix Multiply formulation)
n  Recurrence on node set (Floyd’s algorithm)

13

Floyd’s APSP
n  Terms used

n  node (sub)set Vk = {v1, v2, , vk}
n  Pij

k = minimal length path from vi to vj passing through nodes in Vk
n  dij

k = length of the path Pij
k

n  Recursion: based on node sets
n  Two possibilities: vk in Pij

k or not
n  vk not in Pij

k: Pij
k = Pij

k-1 and dij
k = dij

k-1
n  vk in Pij

k: Pij
k = Pik

k-1 + Pkj
k-1 and dij

k = dik
k-1 + dkj

k-1
n  dij

k = min(dij
k-1, dik

k-1 + dkj
k-1) for k > 0

 = w(vi, vj) for k = 0
n  Solution D = Dn

14

Floyd’s APSP (Sequential)

 D0 = A
 for k = 1 to n
 for i = 1 to n
 for j = 1 to n
 Dij

k = min(Dij
k-1 , Dik

k-1 + Dkj
k-1)

 O(n3) sequential time complexity
 O(n2) space complexity

15

Floyd Parallel
n  Mesh checkerboard partitioning
n  Iteration k: Broadcast k-th row and k-th column of D

 for k = 1 to n
 each PE having a segment of row k of Dk-1 broadcast it in its column
 each PE having a segment of column k of Dk-1 broadcasts it in its row
 each PE waits to receive the needed segments of Dk-1
 each PE computes its part of Dk

n  Note that this algorithm can be pipelined like Gaussian
elimination or LUD

Floyd Parallel: update in place

n  In the kth iteration
n  Dik and Dkj are broadcast and do not

change
n  other elements Dij depend on Dik and Dkj

and themselves (no other elements depend
on Dij)

 So there are no data hazards, and all
 elements can be updated in place

16

k

k

17

Transitive Closure
n  Given: graph G=(V,E)
 Transitive closure: G*=(V,E*)

n  E* = {(v1,v2) | ∃ path from v1 to v2 in G}

n  Connectivity matrix A*
n  Aij

* = 1 if (vi,vj) in E* or i = j
 = 0 otherwise

n  Use Floyd
n  replacing min by or and sum by and

