!'- CS4775 Parallel Programming

Shortest Paths
Wim Bohm, Colorado State University

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

i Minimal Spanning Tree (MST)

= Spanning tree of an undirected graph G
= A tree that 1s a sub-graph of G containing ALL vertices

s Minimal spanning tree of a weighted graph G

= Spanning tree with minimal total weight

= G must be a connected graph

= Applications

= Lowest cost set of roads connecting a set of towns
= Shortest cable connecting a set of computers

Prim’ s Algorithm for MST

= Pick an arbitrary vertex

= Grow MST by choosing a new vertex v and edge e
= such that they are guaranteed to be in the final, correct MST

m Select least-cost (minimal) edge e(u,v) such that
= uis already in MST
= visnotin MST as yet

= Keep doing this until all vertices are in MST
s Thisi1sa GREEDY algorithm

= a locally optimizing strategy leading to a global optimum

i Properties of any tree hence MST

= Path between two nodes a and b in MST 1s unique
s Cycles in MST

= there are no cycles
= If a and b are non-adjacent, adding the edge (a,b) creates a cycle

= Removing any edge on that cycle makes it a tree again

How greedy works for MST

» Consider each stage M with partial MST

= Add the least-cost edge to M to obtain the next stage M’

The resulting MST will be minimal.

= Exchange Argument

Suppose we can create an MST by not taking the minimal cost
edge

Call the minimal edge e, and the non-minimal edge taken e’
Build the rest of the spanning tree

We can now make a lower cost spanning tree by removing ¢’ and
adding e

Hence the spanning tree with e’ in it was not minimal

Prim’ s Algorithm Code Structure

+

// Pick vertex r and mitialize V, E,, dand e
V.i={r};E={} // MST 1n construction
d[r]=0; //d1s aheap
VveVvif((r,v) €EE) {d[v]=w(,v);e[v]=r1;}
else d[v] = o0 ;
// grow the MST
while V, 1=V
Select vertex u from V-V, with minimal d[u] ;
V.=V,+u, E =E, +(uefu));
// update d and ¢
V ve V-V, if (w(u,v) <d[v]) d[v]=w(u,v);e[v]=u

i Complexity, parallelization of Prim

= while-loop executed n-1 times
= Loop-body O(n) if arrays are used
= Sequential complexity: O(mlogn)

= while-loop 1s sequential in nature, because of the
data dependencies in V, E,, d and e

= V loops can be parallelized

Parallel Implementation of Prim

= Data distribution
= FEach PE has data for n/p vertices
= Adjacency matrix A is block striped (column-wise)
= d and e block striped

= PEs compute a local minimum u,

= [ocal minima accumulate to give global minimum in PE,
= PE, broadcasts global minimum u,
= PE owning u, updates V,,E,

= All PEs update their partition of d and e using their
columns of A

i Single Source Shortest Path - SSSP

= Given a vertex s and weighted graph G, find the shortest
distances from s to each vertex

= Dijkstra’ s algorithm (very much like Prim)

Vi={s}
Vve V-Vt if ((s,v) € E) l[v] = w(s,v); else I[v] = oo;
while V, 1=V
Select vertex u from V-V, with minimal 1[u]
V,=V,+tu

V v € V-V, 1[v] = min(1[v], [[u]+w(u,v))

Parallel SSSP

= Very similar to Prim

= Data distribution
= 1n/p vertices per PE
= Column distribute A
= block distribute 1

= Find minimal u, locally

= Accumulate to obtain global minimum u,

= Broadcast global minimum u,

= Every PE updates its 1 block using its column-block of A

10

ﬁ All pairs shortest paths - APSP

= Find length of shortest path between all vertex
pairs
= n*n distance matrix D: Dij is shortest distance for v; 2 v;

s Algorithm: Floyd” s APSP

11

Dynamic Programming approach

= Formulate the problem 1n a recursive fashion

m Reverse this formulation to create a BOTTOM UP solution

= Use solutions for smaller problems to create solutions for larger ones

= There can be multiple recursive formulations
= Recurrence on path length (Matrix Multiply formulation)

= Recurrence on node set (Floyd’ s algorithm)

12

Floyd s APSP

= Terms used
= node (sub)set V., = {v, vy,, V }
m Pijk = minimal length path from v; to v; passing through nodes in V
= d;*=length of the path P;*
= Recursion: based on node sets
= Two possibilities: vy in P;* or not

= v, notin Pyl Pk =P,k and dj*=d;!

. v, in Pijk: Pijk =P K1+ ijk-l and dijk = d k1 + dkjk-l
s dj*=min(d;*!, dy +di) fork>0

=w(V;, Vy) fork=0

s Solution D =Dn

13

ﬁ Floyd' s APSP (Sequential)

DV=A
fork=1ton
fori=1to n
fory=1ton
D= min(D;", Dyt + D)

O(n?) sequential time complexity
O(n?) space complexity

14

Floyd Parallel

= Mesh checkerboard partitioning
= [teration k: Broadcast k-th row and k-th column of D

fork=1ton
each PE having a segment of row k of D¥! broadcast it in its column
each PE having a segment of column k of D*! broadcasts it in its row
each PE waits to receive the needed segments of D*-1

each PE computes its part of Dk

= Note that this algorithm can be pipelined like Gaussian
elimination or LUD

15

Floyd Parallel: update 1n place

In the kth iteration

D, and Dy; are broadcast and do not
change

other elements D;; depend on D;; and D,
and themselves (no other elements depend

on D;,)

So there are no data hazards, and all
elements can be updated in place

k

k

@

16

i Transitive Closure

= Given: graph G=(V.E)
Transitive closure: G*=(V,E*)
= E*={(v,,v,) | 4 path from v, to v, in G}

= Connectivity matrix A*
= Ay =1 if(vpvy) in E* ori=]
= (0 otherwise

= Use Floyd
= replacing min by or and sum by and

17

