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Outline 
•  Background 

–  The message-passing model 
–  Origins of MPI and current status 
–  Sources of further MPI information 

•  Basics of MPI message passing 
–  Hello, World! 
–  Fundamental concepts 
–  Simple examples in Fortran and C 

•  Extended point-to-point operations 
–  non-blocking communication 
–  modes 
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Outline (continued) 

•  Advanced MPI topics 
–  Collective operations 
–  More on MPI datatypes 
–  Application topologies 
–  The profiling interface 

•  Toward a portable MPI environment 
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Companion Material 
•  Online examples available at 

http://www.mcs.anl.gov/mpi/tutorials/perf 
•  ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz 

contains source code and run scripts that 
allows you to evaluate your own MPI 
implementation 
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The Message-Passing Model 
•  A process is (traditionally) a program counter 

and address space. 
•  Processes may have multiple threads 

(program counters and associated stacks) 
sharing a single address space.  MPI is for 
communication among processes, which 
have separate address spaces. 

•  Interprocess communication consists of  
–  Synchronization 
–  Movement of data from one process’s address 

space to another’s. 
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Types of Parallel Computing 
Models 

•  Data Parallel - the same instructions are carried out 
simultaneously on multiple data items (SIMD) 

•  Task Parallel - different instructions on different data 
(MIMD) 

•  SPMD (single program, multiple data) not 
synchronized at individual operation level 

•  SPMD is equivalent to MIMD since each MIMD 
program can be made SPMD (similarly for SIMD, but 
not in practical sense.) 

 Message passing (and MPI) is for MIMD/SPMD 
parallelism.  HPF is an example of an SIMD interface. 
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Cooperative Operations for 
Communication 

•  The message-passing approach makes the exchange 
of data cooperative. 

•  Data is explicitly sent by one process and received by 
another. 

•  An advantage is that any change in the receiving 
process’s memory is made with the receiver’s explicit 
participation. 

•  Communication and synchronization are combined. 

Process 0 Process 1 

Send(data) 
Receive(data) 
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One-Sided Operations for 
Communication 

•  One-sided operations between processes include 
remote memory reads and writes 

•  Only one process needs to explicitly participate. 
•  An advantage is that communication and 

synchronization are decoupled 
•  One-sided operations are part of MPI-2. 

Process 0 Process 1 

Put(data) 

(memory) 

(memory)!

Get(data) 
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What is MPI? 
•  A message-passing library specification 

–  extended message-passing model 
–  not a language or compiler specification 
–  not a specific implementation or product 

•  For parallel computers, clusters, and 
heterogeneous networks 

•  Full-featured 
•  Designed to provide access to advanced 

parallel hardware for 
–  end users 
–  library writers 
–  tool developers 
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MPI Sources 
•  The Standard itself: 

–  at http://www.mpi-forum.org!
–  All MPI official releases, in both postscript and HTML 

•  Books: 
–  Using MPI:  Portable Parallel Programming with the Message-

Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994. 
–  MPI:  The Complete Reference, by Snir, Otto, Huss-Lederman, 

Walker, and Dongarra, MIT Press, 1996. 
–  Designing and Building Parallel Programs, by Ian Foster, Addison-

Wesley, 1995. 
–  Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997. 
–  MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall). 

•  Other information on Web: 
–  at http://www.mcs.anl.gov/mpi 
–  pointers to lots of stuff, including other talks and tutorials, a FAQ, 

other MPI pages 
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Why Use MPI? 

•  MPI provides a powerful, efficient, and 
portable way to express parallel programs 

•  MPI was explicitly designed to enable 
libraries…  

•  … which may eliminate the need for many 
users to learn (much of) MPI 
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A Minimal MPI Program (C) 

#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    MPI_Init( &argc, &argv ); 
    printf( "Hello, world!\n" ); 
    MPI_Finalize(); 
    return 0; 
}!
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Notes on C and Fortran 
•  C and Fortran bindings correspond closely 
•  In C: 

–  mpi.h must be #included 
–  MPI functions return error codes or MPI_SUCCESS 

•  In Fortran: 
–  mpif.h must be included, or use MPI module (MPI-2) 
–  All MPI calls are to subroutines, with a place for the 

return code in the last argument. 

•  C++ bindings, and Fortran-90 issues, are part 
of MPI-2. 
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Error Handling 

•  By default, an error causes all processes to 
abort.  

•  The user can cause routines to return (with 
an error code) instead. 
–  In C++, exceptions are thrown (MPI-2) 

•  A user can also write and install custom error 
handlers. 

•  Libraries might want to handle errors 
differently from applications.  
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Running MPI Programs 
•  The MPI-1 Standard does not specify how to run an 

MPI program, just as the Fortran standard does not 
specify how to run a Fortran program. 

•  In general, starting an MPI program is dependent on 
the implementation of MPI you are using, and might 
require various scripts, program arguments, and/or 
environment variables. 

•  We use mpirun(cs dept) or aprun (Cray) in this class 
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Finding Out About the 
Environment 

•  Two important questions that arise early in a 
parallel program are: 
– How many processes are participating in this 

computation? 
– Which one am I? 

•  MPI provides functions to answer these 
questions: 
–  MPI_Comm_size reports the number of processes. 
–  MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process 



17 

Better Hello (C) 
#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
}!
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MPI Basic Send/Receive 

•  We need to fill in the details in 

•  Things that need specifying: 
–  How will “data” be described? 
–  How will processes be identified? 
–  How will the receiver recognize/screen messages? 
–  What will it mean for these operations to 

complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 
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What is message passing? 
•  Data transfer plus synchronization 

•  Requires cooperation of sender and receiver 
•  Cooperation not always apparent in code 

Data Process 0 

Process 1 

May I Send? 

Yes 

Data 
Data 

Data 
Data 

Data 
Data 

Data 
Data 

Time 
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Some Basic Concepts 

•  Processes can be collected into groups. 
•  Each message is sent in a context, and must 

be received in the same context. 
•  A group and context together form a 

communicator. 
•  A process is identified by its rank in the group 

associated with a communicator. 
•  There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD. 
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MPI Datatypes 
•  The data in a message to sent or received is 

described by a triple (address, count, datatype), 
where 

•  An MPI datatype is recursively defined as: 
–  predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE_PRECISION) 
–  a contiguous array of MPI datatypes 
–  a strided block of datatypes 
–  an indexed array of blocks of datatypes 
–  an arbitrary structure of datatypes 

•  There are MPI functions to construct custom 
datatypes, such an array of (int, float) pairs, or a row 
of a matrix stored columnwise. 
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MPI Tags 
•  Messages are sent with an accompanying 

user-defined integer tag, to assist the 
receiving process in identifying the message. 

•  Messages can be screened at the receiving 
end by specifying a specific tag, or not 
screened by specifying MPI_ANY_TAG as the 
tag in a receive. 

•  Some non-MPI message-passing systems 
have called tags “message types”.  MPI calls 
them tags to avoid confusion with datatypes. 
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MPI Basic (Blocking) Send 
MPI_SEND (start, count, datatype, dest, tag, comm) 
 
•  The message buffer is described by (start, count, 
datatype). 

•  The target process is specified by dest, which is the 
rank of the target process in the communicator specified 
by comm. 

•  When this function returns, the data has been delivered 
to the system and the buffer can be reused.  The 
message may not have been received by the target 
process. 
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MPI Basic (Blocking) Receive 
MPI_RECV(start, count, datatype, source, tag, comm, status) 
 
•  Waits until a matching (on source and tag) message is 

received from the system, and the buffer can be used. 
•  source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE. 

•  status contains further information 
•  Receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error. 
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Retrieving Further Information 
•  Status is a data structure allocated in the user’s program. 
•  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

•  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr) 
tag_recvd  = status(MPI_TAG) 

recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 
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Why Datatypes? 

•  Since all data is labeled by type, an MPI 
implementation can support communication between 
processes on machines with very different memory 
representations and lengths of elementary datatypes 
(heterogeneous communication). 

•  Specifying application-oriented layout of data in 
memory 
–  reduces memory-to-memory copies in the implementation 
–  allows the use of special hardware (scatter/gather) when 

available 
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Tags and Contexts 
•  Separation of messages used to be accomplished by 

use of tags, but 
–  this requires libraries to be aware of tags used by other 

libraries. 
–  this can be defeated by use of “wild card” tags. 

•  Contexts are different from tags 
–  no wild cards allowed 
–  allocated dynamically by the system when a library sets up a 

communicator for its own use. 

•  User-defined tags still provided in MPI for user 
convenience in organizing application 

•  Use MPI_Comm_split to create new communicators  



28 

MPI is Simple 
•  Many parallel programs can be written using 

just these six functions, only two of which are 
non-trivial: 
–  MPI_INIT 
–  MPI_FINALIZE 
–  MPI_COMM_SIZE 
–  MPI_COMM_RANK 
–  MPI_SEND 
–  MPI_RECV 

•  Point-to-point (send/recv) isn’t the only way... 
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Introduction to Collective 
Operations in MPI 

•  Collective operations are called by all 
processes in a communicator. 

•  MPI_BCAST distributes data from one 
process (the root) to all others in a 
communicator. 

•  MPI_REDUCE combines data from all 
processes in communicator and returns it to 
one process. 

•  In many numerical algorithms, SEND/
RECEIVE can be replaced by BCAST/
REDUCE, improving both simplicity and 
efficiency. 
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•  Send a large message from process 0 to process 1 
–  If there is insufficient storage at the destination, the send 

must wait for the user to provide the memory space (through 
a receive) 

•  What happens with 
 
 
 
 

Sources of Deadlocks 

Process 0 
 
Send(1) 
Recv(1) 

Process 1 
 
Send(0) 
Recv(0) 

•  This is called “unsafe” because it depends on the 
availability of system buffers  
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Some Solutions to the “unsafe” 
Problem 

•  Order the operations more carefully: 
Process 0 
 
Send(1) 
Recv(1) 

Process 1 
 
Recv(0) 
Send(0) 

•  Use non-blocking operations: 

Process 0 
 
Isend(1) 
Irecv(1) 
Waitall 

Process 1 
 
Isend(0) 
Irecv(0) 
Waitall 



32 

Toward a Portable MPI 
Environment 

•  MPICH is a high-performance portable 
implementation of MPI (1). 

•  It runs on MPP's, clusters, and heterogeneous 
networks of workstations. 

•  In a wide variety of environments, one can do: 
  configure 
  make 
  mpicc -mpitrace myprog.c 
  mpirun -np 10 myprog 
  upshot myprog.log 

to build, compile, run, and analyze performance. 
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Extending the Message-Passing Interface 
•  Dynamic Process Management 

–  Dynamic process startup 
–  Dynamic establishment of connections 

•  One-sided communication 
–  Put/get 
–  Other operations 

•  Parallel I/O 
•  Other MPI-2 features 

–  Generalized requests 
–  Bindings for C++/ Fortran-90; interlanguage issues 
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When to use MPI 

•  Portability and Performance 
•  Irregular Data Structures 
•  Building Tools for Others 

–  Libraries 
•  Need to Manage memory on a per processor 

basis 
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When not to use MPI 

•  Regular computation matches HPF 
–  But see PETSc/HPF comparison (ICASE 97-72) 

•  Solution (e.g., library) already exists 
–  http://www.mcs.anl.gov/mpi/libraries.html 

•  Require Fault Tolerance 
–  Sockets 

•  Distributed Computing 
–  CORBA, DCOM, etc. 



36 

Summary 

•  The parallel computing community has 
cooperated on the development of a standard 
for message-passing libraries. 

•  There are many implementations, on nearly 
all platforms. 

•  MPI subsets are easy to learn and use. 
•  Lots of MPI material is available. 


