
1

An Introduction to MPI
Parallel Programming with the  

Message Passing Interface
William Gropp

Ewing Lusk
Argonne National Laboratory

2

Outline
•  Background

–  The message-passing model
–  Origins of MPI and current status
–  Sources of further MPI information

•  Basics of MPI message passing
–  Hello, World!
–  Fundamental concepts
–  Simple examples in Fortran and C

•  Extended point-to-point operations
–  non-blocking communication
–  modes

3

Outline (continued)

•  Advanced MPI topics
–  Collective operations
–  More on MPI datatypes
–  Application topologies
–  The profiling interface

•  Toward a portable MPI environment

4

Companion Material
•  Online examples available at

http://www.mcs.anl.gov/mpi/tutorials/perf
•  ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz

contains source code and run scripts that
allows you to evaluate your own MPI
implementation

5

The Message-Passing Model
•  A process is (traditionally) a program counter

and address space.
•  Processes may have multiple threads

(program counters and associated stacks)
sharing a single address space. MPI is for
communication among processes, which
have separate address spaces.

•  Interprocess communication consists of
–  Synchronization
–  Movement of data from one process’s address

space to another’s.

6

Types of Parallel Computing
Models

•  Data Parallel - the same instructions are carried out
simultaneously on multiple data items (SIMD)

•  Task Parallel - different instructions on different data
(MIMD)

•  SPMD (single program, multiple data) not
synchronized at individual operation level

•  SPMD is equivalent to MIMD since each MIMD
program can be made SPMD (similarly for SIMD, but
not in practical sense.)

 Message passing (and MPI) is for MIMD/SPMD
parallelism. HPF is an example of an SIMD interface.

7

Cooperative Operations for
Communication

•  The message-passing approach makes the exchange
of data cooperative.

•  Data is explicitly sent by one process and received by
another.

•  An advantage is that any change in the receiving
process’s memory is made with the receiver’s explicit
participation.

•  Communication and synchronization are combined.

Process 0 Process 1

Send(data)
Receive(data)

8

One-Sided Operations for
Communication

•  One-sided operations between processes include
remote memory reads and writes

•  Only one process needs to explicitly participate.
•  An advantage is that communication and

synchronization are decoupled
•  One-sided operations are part of MPI-2.

Process 0 Process 1

Put(data)

(memory)

(memory)!

Get(data)

9

What is MPI?
•  A message-passing library specification

–  extended message-passing model
–  not a language or compiler specification
–  not a specific implementation or product

•  For parallel computers, clusters, and
heterogeneous networks

•  Full-featured
•  Designed to provide access to advanced

parallel hardware for
–  end users
–  library writers
–  tool developers

10

MPI Sources
•  The Standard itself:

–  at http://www.mpi-forum.org!
–  All MPI official releases, in both postscript and HTML

•  Books:
–  Using MPI: Portable Parallel Programming with the Message-

Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.
–  MPI: The Complete Reference, by Snir, Otto, Huss-Lederman,

Walker, and Dongarra, MIT Press, 1996.
–  Designing and Building Parallel Programs, by Ian Foster, Addison-

Wesley, 1995.
–  Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997.
–  MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

•  Other information on Web:
–  at http://www.mcs.anl.gov/mpi
–  pointers to lots of stuff, including other talks and tutorials, a FAQ,

other MPI pages

11

Why Use MPI?

•  MPI provides a powerful, efficient, and
portable way to express parallel programs

•  MPI was explicitly designed to enable
libraries…

•  … which may eliminate the need for many
users to learn (much of) MPI

12

A Minimal MPI Program (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello, world!\n");
 MPI_Finalize();
 return 0;
}!

13

Notes on C and Fortran
•  C and Fortran bindings correspond closely
•  In C:

–  mpi.h must be #included
–  MPI functions return error codes or MPI_SUCCESS

•  In Fortran:
–  mpif.h must be included, or use MPI module (MPI-2)
–  All MPI calls are to subroutines, with a place for the

return code in the last argument.

•  C++ bindings, and Fortran-90 issues, are part
of MPI-2.

14

Error Handling

•  By default, an error causes all processes to
abort.

•  The user can cause routines to return (with
an error code) instead.
–  In C++, exceptions are thrown (MPI-2)

•  A user can also write and install custom error
handlers.

•  Libraries might want to handle errors
differently from applications.

15

Running MPI Programs
•  The MPI-1 Standard does not specify how to run an

MPI program, just as the Fortran standard does not
specify how to run a Fortran program.

•  In general, starting an MPI program is dependent on
the implementation of MPI you are using, and might
require various scripts, program arguments, and/or
environment variables.

•  We use mpirun(cs dept) or aprun (Cray) in this class

16

Finding Out About the
Environment

•  Two important questions that arise early in a
parallel program are:
– How many processes are participating in this

computation?
– Which one am I?

•  MPI provides functions to answer these
questions:
–  MPI_Comm_size reports the number of processes.
–  MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling process

17

Better Hello (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}!

18

MPI Basic Send/Receive

•  We need to fill in the details in

•  Things that need specifying:
–  How will “data” be described?
–  How will processes be identified?
–  How will the receiver recognize/screen messages?
–  What will it mean for these operations to

complete?

Process 0 Process 1

Send(data)
Receive(data)

19

What is message passing?
•  Data transfer plus synchronization

•  Requires cooperation of sender and receiver
•  Cooperation not always apparent in code

Data Process 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

20

Some Basic Concepts

•  Processes can be collected into groups.
•  Each message is sent in a context, and must

be received in the same context.
•  A group and context together form a

communicator.
•  A process is identified by its rank in the group

associated with a communicator.
•  There is a default communicator whose group

contains all initial processes, called
MPI_COMM_WORLD.

21

MPI Datatypes
•  The data in a message to sent or received is

described by a triple (address, count, datatype),
where

•  An MPI datatype is recursively defined as:
–  predefined, corresponding to a data type from the language

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)
–  a contiguous array of MPI datatypes
–  a strided block of datatypes
–  an indexed array of blocks of datatypes
–  an arbitrary structure of datatypes

•  There are MPI functions to construct custom
datatypes, such an array of (int, float) pairs, or a row
of a matrix stored columnwise.

22

MPI Tags
•  Messages are sent with an accompanying

user-defined integer tag, to assist the
receiving process in identifying the message.

•  Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY_TAG as the
tag in a receive.

•  Some non-MPI message-passing systems
have called tags “message types”. MPI calls
them tags to avoid confusion with datatypes.

23

MPI Basic (Blocking) Send
MPI_SEND (start, count, datatype, dest, tag, comm)

•  The message buffer is described by (start, count,
datatype).

•  The target process is specified by dest, which is the
rank of the target process in the communicator specified
by comm.

•  When this function returns, the data has been delivered
to the system and the buffer can be reused. The
message may not have been received by the target
process.

24

MPI Basic (Blocking) Receive
MPI_RECV(start, count, datatype, source, tag, comm, status)

•  Waits until a matching (on source and tag) message is

received from the system, and the buffer can be used.
•  source is rank in communicator specified by comm, or
MPI_ANY_SOURCE.

•  status contains further information
•  Receiving fewer than count occurrences of datatype is

OK, but receiving more is an error.

25

Retrieving Further Information
•  Status is a data structure allocated in the user’s program.
•  In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

•  In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

26

Why Datatypes?

•  Since all data is labeled by type, an MPI
implementation can support communication between
processes on machines with very different memory
representations and lengths of elementary datatypes
(heterogeneous communication).

•  Specifying application-oriented layout of data in
memory
–  reduces memory-to-memory copies in the implementation
–  allows the use of special hardware (scatter/gather) when

available

27

Tags and Contexts
•  Separation of messages used to be accomplished by

use of tags, but
–  this requires libraries to be aware of tags used by other

libraries.
–  this can be defeated by use of “wild card” tags.

•  Contexts are different from tags
–  no wild cards allowed
–  allocated dynamically by the system when a library sets up a

communicator for its own use.

•  User-defined tags still provided in MPI for user
convenience in organizing application

•  Use MPI_Comm_split to create new communicators

28

MPI is Simple
•  Many parallel programs can be written using

just these six functions, only two of which are
non-trivial:
–  MPI_INIT
–  MPI_FINALIZE
–  MPI_COMM_SIZE
–  MPI_COMM_RANK
–  MPI_SEND
–  MPI_RECV

•  Point-to-point (send/recv) isn’t the only way...

29

Introduction to Collective
Operations in MPI

•  Collective operations are called by all
processes in a communicator.

•  MPI_BCAST distributes data from one
process (the root) to all others in a
communicator.

•  MPI_REDUCE combines data from all
processes in communicator and returns it to
one process.

•  In many numerical algorithms, SEND/
RECEIVE can be replaced by BCAST/
REDUCE, improving both simplicity and
efficiency.

30

•  Send a large message from process 0 to process 1
–  If there is insufficient storage at the destination, the send

must wait for the user to provide the memory space (through
a receive)

•  What happens with

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

•  This is called “unsafe” because it depends on the
availability of system buffers

31

Some Solutions to the “unsafe”
Problem

•  Order the operations more carefully:
Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

•  Use non-blocking operations:

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

32

Toward a Portable MPI
Environment

•  MPICH is a high-performance portable
implementation of MPI (1).

•  It runs on MPP's, clusters, and heterogeneous
networks of workstations.

•  In a wide variety of environments, one can do:
 configure
 make
 mpicc -mpitrace myprog.c
 mpirun -np 10 myprog
 upshot myprog.log

to build, compile, run, and analyze performance.

33

Extending the Message-Passing Interface
•  Dynamic Process Management

–  Dynamic process startup
–  Dynamic establishment of connections

•  One-sided communication
–  Put/get
–  Other operations

•  Parallel I/O
•  Other MPI-2 features

–  Generalized requests
–  Bindings for C++/ Fortran-90; interlanguage issues

34

When to use MPI

•  Portability and Performance
•  Irregular Data Structures
•  Building Tools for Others

–  Libraries
•  Need to Manage memory on a per processor

basis

35

When not to use MPI

•  Regular computation matches HPF
–  But see PETSc/HPF comparison (ICASE 97-72)

•  Solution (e.g., library) already exists
–  http://www.mcs.anl.gov/mpi/libraries.html

•  Require Fault Tolerance
–  Sockets

•  Distributed Computing
–  CORBA, DCOM, etc.

36

Summary

•  The parallel computing community has
cooperated on the development of a standard
for message-passing libraries.

•  There are many implementations, on nearly
all platforms.

•  MPI subsets are easy to learn and use.
•  Lots of MPI material is available.

