
2/4/2010

1

Chapter 4

Message-Passing Programming

Message-passing Model

2

2/4/2010

2

Characteristics of Processes

• Number is specified at start-up time
• Remains constant throughout the execution of• Remains constant throughout the execution of

program
• All execute same program
• Each has unique ID number
• Alternately performs computations and

communicates

3

communicates
• Passes messages both to communicate and to

synchronize with each other.

Features of Message-passing Model

• Runs well on a variety of MIMD architectures.
– Natural fit for multicomputers

• Execute on multiprocessors by using shared
variables as message buffers
– Model’s distinction between faster, directly accessible

local memory and slower, indirectly accessible remote
memory encourages designing algorithms that
maximize local computation and minimize

4

maximize local computation and minimize
communications

• Simplifies debugging
– Easier than debugging shared-variable programs

2/4/2010

3

Message Passing Interface History
• Late 1980s: vendors had unique libraries

– Usually FORTRAN or C augmented with functions
calls that supported message-passing

• 1989: Parallel Virtual Machine (PVM) developed1989: Parallel Virtual Machine (PVM) developed
at Oak Ridge National Lab
– Supported execution of parallel programs across a

heterogeneous group of parallel and serial computers
• 1992: Work on MPI standard began

– Chose best features of earlier message passing
languages
N t f h t tti i h

5

– Not for heterogeneous setting – i.e., homogeneous
• Today: MPI is dominant message passing library

standard

What We Will Assume

• The programming paradigm typically used with
MPI is called a SPMD paradigm (single programMPI is called a SPMD paradigm (single program
multiple data)

• Consequently, the same program runs on each
processor

• The effect of running different programs is
achieved by branches within the source code

h diff t t diff t

6

where different processors execute different
branches

2/4/2010

4

Circuit Satisfiability Problem

Given a circuit containing AND, OR, and
NOT t fi d if thNOT gates, find if there are any
combinations of input 0/1 values for which
the circuit output is the value 1

7

Circuit Satisfiability

Note: The
input
consists of
variables a,
b

8

b, ..., p

2/4/2010

5

Solution Method

• Circuit satisfiability is NP-complete
What combinations of inp t al es ill the– What combinations of input values will the
circuit output the value 1

• We seek all solutions
– Not a “Yes/No” answer about solution existing

• We find solutions using exhaustive search

9

– 16 inputs 216 = 65,536 combinations to test

• Functional decomposition natural here

Embarrassingly Parallel

• The problem solution falls easily into the
definition of tasks that do now need to interactdefinition of tasks that do now need to interact
with each other, then the problem is said to be
embarrassingly parallel

• H.J. Siegel calls this situation instead pleasingly
parallel and many professionals use this term

10

2/4/2010

6

Partitioning: Functional Decomposition

11

 Embarrassingly (or Embarrassingly (or pleasingly) parallelpleasingly) parallel

Agglomeration and Mapping

• Properties of parallel algorithm
– Fixed number of tasks
– No communications between tasks
– Time needed per task is variable

• Bit sequences for most tasks do not satisfy circuit
• Some bit sequences are quickly seen unsatisfiable
• Other bit sequences may take more time

12

• Consult mapping strategy decision tree
– Map tasks to processors in a cyclic fashion

2/4/2010

7

Cyclic (interleaved) Allocation

• Assume p processes• Assume p processes

• Each process gets every pth piece of work
– i.e., each piece of work, I, is assigned to process k

where k = i mod 5

13

Questions to Consider

• Assume n pieces of work, p processes,
and cyclic allocationand cyclic allocation

• What is the maximum pieces of work any
process has?

• What is the minimum pieces of work any
process has?

14

• How many processes have the most
pieces of work?

2/4/2010

8

Summary of Program Design

• Program considers all 65,536
combinations of 16 boolean inputscombinations of 16 boolean inputs

• Combinations allocated in cyclic fashion to
processes

• Each process examines each of its
combinations

15

• If it finds a satisfiable combination, it prints
this combination

MPI Program for Circuit Satisfiability

• Each active MPI process executes its own copy
of the program

• Each process has its own copy of all the
variables declared in the program, including:
– External variables declared outside of any function

– Automatic variables declared inside a function

16

2/4/2010

9

C Code Include Files

#include <mpi.h> /* MPI header file */
#include <stdio.h> /* Standard C I/OStandard C I/O#include stdio.h / Standard C I/O Standard C I/O

header file */header file */

•• These appear at the beginning of the These appear at the beginning of the
program file. program file.

17

•• The file name will have a .c as these are C The file name will have a .c as these are C
programs, augmented with the MPI library.programs, augmented with the MPI library.

Header for C Function Main
(Local Variables)

int main (int argc, char *argv[]) {
int i; /* loop index */
int id; /* Process ID number */int id; / Process ID number /
int p; /* Number of processes */
void check_circuit (int, int);

 Include Include argcargc and and argvargv: they are needed to initialize MPI: they are needed to initialize MPI

 The The i, , idid, and , and pp are local (or automatic) variables.are local (or automatic) variables.

18

 One copy of every variable is needed for each process One copy of every variable is needed for each process
running this programrunning this program

 If there are p processes, then the ID numbers start at 0 If there are p processes, then the ID numbers start at 0
and end at p and end at p --1.1.

2/4/2010

10

Replication of Automatic Variables
(Shown for id and p only)

0id

6p

2id

1id

6p
5id

6p

19

4id

6p

6p
3id

6p

Initialize MPI
MPI_Init (&argc, &argv);

• First MPI function called by each process

• Not necessarily first executable statement

• In fact, call need not be located in main

• But, it must be called before any other MPI

20

function is invoked

• Allows system to do any necessary setup
to handle calls to MPI library

2/4/2010

11

MPI Identifiers

• All MPI identifiers (including function identifiers)
begin with the prefix “MPI ”begin with the prefix MPI_

• The next character is a capital letter followed by
a series of lowercase letters and underscores.

• Example: MPI_Init

• All MPI constants are strings of capital letters
d d b i i ith MPI

21

and underscores beginning with MPI_

• Recall C is case-sensitive as it was developed in
a UNIX environment.

Communicators
• When MPI is initialized, every active process becomes a

member of a communicator called MPI_COMM_WORLD.

• Communicator: Opaque object that provides the message-
i i fpassing environment for processes

• MPI_COMM_WORLD

– This is the default communicator

– It includes all processes automatically

– For most programs, this is sufficient

• It is possible to create new communicators

22

• It is possible to create new communicators

– These are needed if you need to partition the processes
into independent communicating groups

2/4/2010

12

Communicators (cont.)

• Processes within a communicator are ordered

Th k f i it iti i th ll• The rank of a process is its position in the overall
order

• In a communicator with p processes, each
process has a unique rank, which we often think
of as an ID number, between 0 and p-1

A it k t d t i th

23

• A process may use its rank to determine the
portion of a computation or portion of a dataset
that it is responsible for

Communicator

Communicator
Communicator Name

MPI_COMM_WORLD

0

2

5

Processes

Ranks

24

1

3

4

2/4/2010

13

Determine Process Rank

MPI_Comm_rank (MPI_COMM_WORLD, &id);

• A process can call this function to determine its
rank with a communicator

• The first argument is the communicator name
• The process rank (in range 0, 1, …, p-1) is

returned through second argument

25

etu ed t oug seco d a gu e t

Determine Number of Processes

MPI_Comm_size (MPI_COMM_WORLD, &p);

• A process can call this MPI function

• First argument is the communicator name

• This call determines the number of processes

• The number of processes is returned through

26

p g
the second argument

2/4/2010

14

What about External Variables or Global
Variables?

int total;

int main (int argc, char *argv[]) {
int i;
int id;
int p;
…

27

 Try to avoid Try to avoid themthem

 They They can cause major debugging problems. can cause major debugging problems.
However, sometimes they are However, sometimes they are neededneeded

Cyclic Allocation of Work
for (i = id; i < 65536; i += p)

check_circuit (id, i);

 Now that the MPI process knows its rank and the Now that the MPI process knows its rank and the
total number of processes, it may check its share of total number of processes, it may check its share of
the 65,536 possible inputs to the the 65,536 possible inputs to the circuitcircuit

 For example, if there are 5 processes, process id = 3 For example, if there are 5 processes, process id = 3
checks checks ii = id = 3= id = 3

ii += 5 = 8+= 5 = 8

28

ii += 5 = 13 etc.+= 5 = 13 etc.

 Parallelism is in the outside function Parallelism is in the outside function check_circuitcheck_circuit

 It can be an ordinary, sequential It can be an ordinary, sequential functionfunction

2/4/2010

15

After the Loop Completes

Aft th l t th l it k i fi i h d

printf (“Process %d is done\n”, id);

fflush (stdout);

• After the process completes the loop, its work is finished
and it prints a message that it is done

• It then flushes the output buffer to ensure the eventual
appearance of the message on standard output even if
the parallel program crashes

• Put an fflush command after each printf command

29

• The printf is the standard output command for C. The %d
says integer data is to be output and the data appears
after the comma – i.e. insert the id number in its place in
the text

Shutting Down MPI

MPI_Finalize();
return 0;

• Call after all other MPI library calls

• Allows system to free up MPI resources

• Return code:

return 0;

30

– 0 means the code ran to completion

– 1 is used to signal an error has occurred

2/4/2010

16

#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[])
{ int i;

MPI Program for Circuit Satisfiability (Main, version 1)

{
int id;
int p;
void check_circuit (int, int);
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);
for (i = id; i < 65536; i += p)

check circuit (id i);

31

check_circuit (id, i);
printf ("Process %d is done\n", id);
fflush (stdout);
MPI_Finalize();
return 0;

}

Enhancing the Program
• We want to find the total number of solutions
• A single process can maintain an integer

variable that holds the number of solutions it
finds, but we want the processors to cooperate
to compute the global sum of the values

• Said another way, we want to incorporate a
sum-reduction into program. This will require
message passing

• Reduction is a collective communication –

32

• Reduction is a collective communication –
– i.e. a communication operation in which a group of

processes works together to distribute or gather
together a set of one or more values

2/4/2010

17

Modifications

• Modify function check_circuit
– Return 1 if the circuit is satisfiable with the

input combination

– Return 0 otherwise

• Each process keeps local count of
satisfiable circuits it has found

33

• We perform reduction after the ‘for’ loop

Modifications

• In function main we need to add two variables:
– An integer solutions – This keeps track of

solutions for this processsolutions for this process
– An integer global_solutions – This is used

only by process 0 to store the grand total of
the count values from the other processes

– Process 0 is also responsible for printing the
total count at the end

34

total count at the end

– Remember that each process runs the same
program, but if statements and various
assignment statements dictate which code a
process executes

2/4/2010

18

New Declarations and Code

int solutions; /* Local sum */

i t l b l l ti /* Gl b l */int global_solutions; /* Global sum */

int check_circuit (int, int);

solutions = 0;

for (i = id; i < 65536; i += p)

35

(; ; p)

solutions += check_circuit (id, i);
This loop calculates the total number of solutions for each
individual process. We now have to collect the individual
values with a reduction operation,

The Reduction

• After a process completes its work, it is ready to
participate in the reduction operation.

MPI pro ides a f nction MPI Red ce to• MPI provides a function, MPI_Reduce, to
perform one or more reduction operation on
values submitted by all the processes in a
communicator.

• The next slide shows the header for this function
and the parameters we will use

36

and the parameters we will use.

• Most of the parameters are self-explanatory.

2/4/2010

19

Header for MPI_Reduce()
int MPI_Reduce (
void *operand, /* addr of 1st reduction element */
void *result, /* addr of 1st reduction result */void result, / addr of 1st reduction result /
int count, /* reductions to perform */
MPI_Datatype type, /* type of elements */
MPI_Op operator, /* reduction operator */
int root, /* process getting result(s) */
MPI_Comm comm /* communicator */

)

37

Our call will be:
MPI_Reduce (&solutions, &global_solutions, 1,

MPI_INT, MPI_SUM, 0,MPI_COMM_WORLD);

MPI_Datatype Options

• MPI_CHAR
• MPI DOUBLEMPI_DOUBLE
• MPI_FLOAT
• MPI_INT
• MPI_LONG
• MPI_LONG_DOUBLE
• MPI_SHORT

MPI UNSIGNED CHAR

38

• MPI_UNSIGNED_CHAR
• MPI_UNSIGNED
• MPI_UNSIGNED_LONG
• MPI_UNSIGNED_SHORT

2/4/2010

20

MPI_Op Options for Reduce

• MPI_BAND B = bitwise
• MPI BORMPI_BOR
• MPI_BXOR
• MPI_LAND L = logical
• MPI_LOR
• MPI_LXOR
• MPI_MAX

MPI MAXLOC Max and location of max

39

• MPI_MAXLOC Max and location of max
• MPI_MIN
• MPI_MINLOC
• MPI_PROD
• MPI_SUM

Our Call to MPI_Reduce()
MPI_Reduce (&solutions,

&global_solutions,
1,If count > 1, list elements

for reduction are found in
MPI_INT,
MPI_SUM,
0,
MPI_COMM_WORLD);

Only process 0
will get the result

After this call, process 0 has in global_solutions the sum

contiguous memory.

40

of all of the other processes solutions. We then conditionally
execute the print statement:

if (id==0) printf ("There are %d different solutions\n",
global_solutions);

2/4/2010

21

Version 2 of Circuit Satisfiability

• The code for main is on page 105 and
incorporates all the changes we made plus weincorporates all the changes we made plus we
make trivial changes for check_circuit to return
the values of 1 or 0.

• First, in main, the declaration must show an
integer being returned instead of a void function:

int check circuit(int int);

41

int check_circuit(int, int);

and in the function we need to return a 1 if a
solution is found and a 0 otherwise.

Main Program, Circuit Satisfiability, Version 2

#include "mpi.h"
#include <stdio.h>

int main (int argc, char *argv[]) {
int count; /* Solutions found by this proc */
int global_count; /* Total number of solutions */
int i;
int id; /* Process rank */int id; / Process rank /
int p; /* Number of processes */
int check_circuit (int, int);

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

count = 0;
for (i = id; i < 65536; i += p)

count += check_circuit (id, i);

42

MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

printf ("Process %d is done\n", id);
fflush (stdout);
MPI_Finalize();
if (!id) printf ("There are %d different solutions\n", global_count);
return 0;}

2/4/2010

22

Some Cautions About Thinking “Right” About MPI
Programming

• The printf statement must be a conditional
because only process 0 has the total sum at the
endend.

• That variable is undefined for the other
processes.

• In fact, even if all of them had a valid value, you
don’t want all of them printing the same

d f 9 ti !

43

message over and over for 9 times!

Some Cautions About Thinking “Right” about MPI
Programming

• Every process in the communicator must
execute the MPI_Reduce.

• Processes enter the reduction by volunteering
the value – they cannot be called by process 0.

• If you fail to have all process in a communicator
call the MPI_Reduce, the program will hang at
the point the function is executed,

44

2/4/2010

23

Execution of Second Program with 3
Processes

0) 0110111110011001
0) 1110111111011001
1) 1110111110011001

Compare this with
1) 1110111110011001
1) 1010111111011001
2) 1010111110011001
2) 0110111111011001
2) 1110111110111001
1) 0110111110111001
0) 1010111110111001

slide 42.

The same solutions
are found, but output
order is different,

45

)
Process 1 is done
Process 2 is done
Process 0 is done
There are 9 different
solutions

Benchmarking

Measuring the Benefit for Parallel
E tiExecution

2/4/2010

24

Benchmarking – What is It?

• Benchmarking: Uses a collection of runs to test how
efficient various programs (or machines) are.

• Usually some kind of counting function is used to count
various operations.

• Complexity analysis provides a means of evaluating how
good an algorithm is
– Focuses on the asymptotic behavior of algorithm as size of date

increases.
– Does not require you to examine a specific implementation.

• Once you decide to use benchmarking, you must first

47

Once you decide to use benchmarking, you must first
have a program as well as a machine on which you can
run.

• There are advantages and disadvantages to both types
of analysis.

Benchmarking

• Determining the complexity analysis for ASC
algorithms is done as with sequential algorithms
since all PEs are working in lockstepsince all PEs are working in lockstep.

• Thus, as with sequential algorithms, you
basically have to look at your loops to judge
complexity.

• Recall that ASC has a performance monitor that
counts the number of scalar operations

48

counts the number of scalar operations
performed and the number of parallel operations
performed.

• Then, given data about a specific machine, run
times can be estimated.

2/4/2010

25

Benchmarking with MPI

• When running on a parallel machine that is not
synchronized as a SIMD is, we have more
difficulties in seeing the effect of parallelism bydifficulties in seeing the effect of parallelism by
looking at the code.

• Of course, we can always, in that situation, use
the wall clock provided the machine is not being
shared with anyone else – background jobs can
completely louse up your perceptions.

49

p y p y p p

• As with the ASC, we want to exclude some
things from our timings:

Benchmarking a Program

• We will use several MPI-supplied functions:
• double MPI_Wtime (void)

– current timecurrent time
– By placing a pair of calls to this function, one before

code we wish to time and one after that code, the
difference will give us the execution time.

• double MPI_Wtick (void)
– timer resolution
– Provides the precision of the result returned by

50

Provides the precision of the result returned by
MPI_Wtime.

• int MPI_Barrier (MPI_Comm comm)
– barrier synchronization

2/4/2010

26

Barrier Synchronization
• Usually encounter this term first in operating systems

classes.
• A barrier is a point where no process can proceed

beyond it until all processes have reached itbeyond it until all processes have reached it.
• A barrier ensures that all processes are going into the

covered section of code at more or less the same time.
• MPI processes theoretically start executing at the same

time, but in reality they don’t.
• That can throw off timings significantly.
• In the second version the call to reduce requires all

51

In the second version, the call to reduce requires all
processes to participate.

• Processes that execute early may wait around a lot
before stragglers catch up. These processes would
report significantly higher computation times than the
latecomers.

Barrier Synchronization

• In operating systems you learn how barriers can
be implemented in either hardware or software.

• In MPI, a function is provided that implements a
barrier.

• All processes in the specified communicator wait
at the barrier point.

52

2/4/2010

27

Benchmarking Code

double elapsed_time; /* local in main */
…
MPI Init (&argc &arg)MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD); /* wait */
elapsed_time = - MPI_Wtime();
… /* timing all in here */

MPI_Reduce (…); /* Call to Reduce */
elapsed time += MPI Wtime();/* stop timer */

53

elapsed_time + MPI_Wtime();/ stop timer /

As we don’t want to count I/O, comment out the printf and
fflush

