Clustering for Change Detection

CS 510
Lecture #10
February 8, 2017

Discuss PA2

Where are we?

- We can attend to still "objects" (interesting patches)
 - Geometric transformations
 - Fourier Analysis / Aliasing
 - DoG (Difference of Gaussians)
- Motion grabs attention
 - Far more than any other cue
 - Think of foveal/peripheral vision
- Next task: motion segmentation/attention
 - Phase 1: still camera
 - Phase 2: moving camera

Change Detection

- Detecting moving objects in videos with still cameras is easy:
 - If a pixel changes, something has moved!
- Or is it? Why might a pixel change?
 - A moving object obscures a background pixel
 - An object moves, revealing a background pixel
 - Ghosting
 - Repeated variation (multi-state pixels)
 - Model variation pattern

Repeated Variation (obvious)

Repeated Variation (subtle)
Motion from Still Cameras

1. Detect meaningfully changed pixels
 - Model individual pixels: 2 methods
 - Mixture of Gaussians (Stauffer & Grimson)
 - Statistical sampling (Barnich & Van Droogenbroeck)
 - Both grounded in clustering

2. Track detected regions
 - Again, 2 methods (still camera simplifies)
 - Kalman filters
 - Particle filters (Isard & Blake)
 - Eliminate ghost regions
 - Eliminate fragmentation
 - Determine trajectory

Clustering

- Assumptions
 - K: the number of clusters
 - Every descriptor is a point in feature space
- Implicit Approach
 - Fit K statistical distributions (clusters) that are most likely to explain the data
 - K-Means (in OpenCV)
 - Expectation Maximization (EM) (in OpenCV)

K-Means

- Select K samples as random, make them cluster centers
 - There are useful variations on this step
- Iterate until no change:
 - Assign every sample to the nearest cluster center
 - Move every cluster center to the mean of the samples assigned to it

K-Means Illustration

We Pick: K = 2

Excellent Online Visualization

Analysis of K-Means

- K-Means minimizes \(\sum_{s \in S} || s - C(s) ||^2 \)
 - Where ‘S’ is the set of samples
 - C(s) is the cluster center that sample ‘s’ is assigned to
- The assignment step reduces the value by changing the assignments C(s)
- The mean computation step reduces the value by centering the means
- Together, they hill climb to a local optima
Probabilistic Interpretation

- Every cluster center can be viewed as the mean of a Gaussian random process
 - St. Dev. is the same in every direction
 - St. Dev. is the same for every process
 - Samples are assigned to the process that was most likely to create them

- This interpretation supports
 - Estimating the likelihood of a sample
 - If K-Means is run more than once, select the solution most likely to generate the observed data