Backpropagation

Backpropagation is the algorithm that describes how we update weights in a network, given:
- Training samples
- Training labels
- An cost function

It's used for (almost) all networks.

Network nodes may be:
- Non-linear perceptrons (the most common)
- Convolutional units
- Pooling units
- Batch normalization units
- ...
Partial derivatives as error measures

- Imagine you want to change the output \(z_l^j \) by \(\Delta z_l^j \)
- Then \(\Delta C = \frac{\partial C}{\partial z_l^j} \Delta z_l^j \)
- If \(\left| \frac{\partial C}{\partial z_l^j} \right| \) is large, then \(C \) becomes smaller by giving \(\Delta z_l^j \) the opposite sign
- But if \(\left| \frac{\partial C}{\partial z_l^j} \right| \) is near zero, then \(\Delta z_l^j \) doesn’t matter.
- \(\Delta C = \frac{\partial C}{\partial z_l^j} \Delta z_l^j \)

So where are we?

- We can optimize on a per-sample basis
 - Because the cost function is an average
- Minimizing the \(\delta_s \) optimizes the net
 - The \(\delta_s \) depend on the data samples
- But how do we minimize the \(\delta_s \)?
- We will assume that nodes have non-linear functions, so \(a_l^j = \sigma(z_l^j) \)

Output Layer

- \(\delta_l^j = \frac{\partial C}{\partial a_l^j} \sigma'(z_l^j) \) by the chain rule
- \(\frac{\partial C}{\partial a_l^j} \) is the partial derivative of \(C \) with respect to the activation of output unit \(j \)
 - If \(C \) is LMS (slide #6)
 - \(\frac{\partial C}{\partial a_l^j} = a_l^j(x) - y(x) \)
 - The difference between the output & desired output
 - Explains the \(\frac{1}{2} \) in LMS

Output Layer (cont.)

- \(\sigma'(z_l^j) \) is the derivative of the non-linear transfer function at \(z_l^j \)
 - If \(\sigma(x) = \tanh(x) \), \(\sigma'(x) = 1 - \tanh^2(x) \)
 - If \(\sigma(x) = (1 + e^{-x})^{-1} \), \(\sigma'(x) = \sigma(x)(1 - \sigma(x)) \)
 - \(\delta_l^j = \left(a_l^j(x) - y(x)\right)(1 - \tanh^2(z_l^j(x))) \) or
 - \(\delta_l^j = \left(a_l^j(x) - y(x)\right)\left(a_l^j(x)(1 - a_l^j(x))\right) \)

\(\delta_l^j \) given \(\delta_l^{L+1} \)

- \(\delta_l^j = \sigma'(z_l^j) \sum_k w_{kj}^{l+1} \delta_k^{l+1} \)
 - \(\sigma' \) is computed as on previous slide
 - The RHS is just the sum of the impacts
 - This is where backpropagation comes from
 - Calculate \(\delta_s \) for output layer
 - Then recursively compute \(\delta_s \) for previous layers
Computing δs...

Layer 1

Layer 2

Layer 3

Cost

Compute intermediate δs (slide #12)

Compute output layer δs (slide #11)

So...

• Given an input x and output y:
 – We can compute δ^l_j for every node j at every level l
 – Minimizing the δs will optimize the network
 • Relative to this sample
 • So we need to adjust the weights w_i and b to reduce the δs
 • But just a little for each input/output pair
 • So we can optimize across all samples

Adjusting b

• Remember that $\delta^l_j \equiv \frac{\partial C}{\partial x_j}$ (slide #8)
• And that $z^l_j = w^l_j x + b$
• So $\frac{\partial C}{\partial b_j} = \delta^l_j$
• So $b^l_j \leftarrow (1 - \alpha) b^l_j - \alpha \delta^l_j$
 – Where α is a learning rate
 – Regulates how much you react to each sample

Adjusting w’s

• $\frac{\partial C}{\partial w^l_{jk}} = a_k^l - 1 \delta^l_j$
• So $w^l_{jk} \leftarrow (1 - \alpha) w^l_{jk} - \alpha a_k^l - 1 \delta^l_j$
 – Where α is the same learning rate as before
 – We are collectively minimizing the deltas by heading downhill in the $k+1$ dimensional space defined by w & b

Backpropagation (redux)

• Backpropagation updates weights in a network, given
 – Training samples
 – Training labels
 – An cost function
• Network nodes may be
 – Non-linear perceptrons (the most common)
 – Convolutional units
 – Pooling units
 – Batch normalization units
 – …