Simple Tracking

To track an object from one frame to the next:

• Find window with moving object in frame \(t \)
• Correlate window to all locations in frame \(t+1 \)
• Move tracking window to best match
 – Drop track correlation too low.
• Image window at \(t+1 \) position becomes new target; iterate for frame \(t+1 \)
Can we do better?

• Is there something better we can compare to than the raw attention window?
 – Sometimes edges are better to track than pixels
 – Is there something better still?

• Do we have to search all of frame t+1?
 – Can we limit the search?
 – Predict where the object is headed?
 – Describe the object’s motion?
 – Exploit foreground information in frame t+1?

• What if we don’t find the target in frame t+1?
Optimized Correlation Output Filters

Ph.D. thesis by David Bolme
Colorado State University,
Dec., 2010.

Intra-class variation

• Challenges for matching & tracking
 – Changes in shape/pose/viewpoint
 – Changes in apparent color

• Goal: learn a general template
 – Capable of matching many samples
 – Within constraints of a linear filter
Step #1: Edge Detection

• To focus on structure, extract edge magnitudes
 – Convolve with Sobel edge masks
 – Compute D_x & D_y for every pixel
 – Edge magnitude is $\sqrt{(D_x^2 + D_y^2)}$

• Remember: linear filter
Edge Detection in Practice
Simple Templates

- Cutting a template from an example doesn’t work…

Edge Image Edge Template Correlation
Training

Edge Image (f) Unknown Template (h) Desired Output (g)

\[f \otimes h = g \]

\[F \cdot H^* = G \]
“In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution is the pointwise product of Fourier transforms.”
Exact Filter

$F \cdot H^* = G$

$H^* = \frac{G}{F}$
Average of Exact Synthetic Filters

\[H^* = \frac{1}{N} \sum_i \frac{F_i}{G_i} \]

Image is of \(h \), not \(H \)
Detection

• Correlate trained template to every video frame
 – Use frequency domain to speed computation

• Find peaks in correlation images
 – Keep peaks that exceed a threshold
First Example Video - YouTube

Person Detection ASEF S2L1_T1234
First Application: Eyes

Is it being used ...
MOSSE filter

• Minimize Output Sum of Squared Errors

\[H^* = \min_{H^*} \sum_i \left| F_i \cdot H^* - G_i \right|^2 \]

• This form is more stable for small numbers of training samples

\[H = \frac{\sum_i G_i \cdot F^*_i}{\sum_i F_i \cdot F^*_i + \varepsilon} \]
MOSSE Filter Tracking

• User selects initial window to track
• Train filter on
 – Initial window
 – Small affine transformations of initial window
• Update filter using
 – Previous filter
 – If tracked, add small transformations of current window
MOSSE Track: Correlation filter based tracking
<table>
<thead>
<tr>
<th>Input</th>
<th>Filter</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CVPR2010 Tracking Highlights