Backpropagation

CS 510
Lecture #20
March 23th, 2018
Backpropagation

- Backpropagation is the algorithm that describes how we update weights in a network, given
 - Training samples
 - Training labels
 - A cost function
- It's used for (almost) all networks
- Network nodes may be
 - Non-linear perceptrons (the most common)
 - Convolutional units
 - Pooling units
 - Batch normalization units
 - ...
Goals

• Walk you through the math of backpropagation
 – Complicated, but just calculus
 – Almost universal: modifiable for different node types (see previous slide)

• Today’s derivation assumes multi-layer perceptrons
 – $z(x) = wx + b$
 – $a(x) = \sigma(z(x)) = \sigma(wx + b)$

• Remember the chain rule from calculus:
 – $f(x) = g(h(x)) \rightarrow f'(x) = g'(h(x))h'(x)$
Simple Neural Network

Layer 1

Layer 2

Layer 3

Notation: superscripts are layers, subscripts are node numbers
Adding a Cost Function

Layer 1 Layer 2 Layer 3 Cost

N^1_1 N^2_1 N^3_1 Y_1
N^1_2 N^2_2 N^3_2 Y_2
N^1_3 N^2_1 N^3_1
N^1_4
Cost Functions

• Cost functions measure the gap between the network output and the ideal output

• Two necessary properties
 1. An average over samples: \(C = \frac{1}{n} \sum_x C_x \)
 2. Function of output activations: \(C = C(a_l) \)

• Example: mean squared error
 • \(C = \frac{1}{2n} \sum_x \| y(x) - a^L(x) \|^2 \)

Allows us to optimize per sample

Allows us to initialize the partial derivative computations
δs : local derivatives as error measures

\[\Delta C = \frac{\partial C}{\partial z_j^l} \Delta z_j^l \]
Partial derivatives as error measures

• Imagine you want to change the output z^l_j, by Δz^l_j

• Then $\Delta C = \frac{\partial C}{\partial z^l_j} \Delta z^l_j$

• If $\left| \frac{\partial C}{\partial z^l_j} \right|$ is large, then C becomes smaller by giving Δz^l_j the opposite sign

• But if $\left| \frac{\partial C}{\partial z^l_j} \right|$ is near zero, then Δz^l_j doesn’t matter.

 – $\frac{\partial C}{\partial z^l_j}$ is already optimal!

 – $\delta^l_j \equiv \frac{\partial C}{\partial z^l_j}$
So where are we?

- We can optimize on a per-sample basis
 - Because the cost function is an average
- Minimizing the δs optimizes the net
 - The δs depend on the data samples
- But how do we minimize the δs?

- We will assume that nodes have non-linear functions, so $a_j^l = \sigma(z_j^l)$
Output Layer

- \(\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L) \) by the chain rule

- \(\frac{\partial C}{\partial a_j^L} \) is the partial derivative of C with respect to the activation of output unit j
 - If C is LMS (slide #6)
 - \(\frac{\partial C}{\partial a_j^L} = a_j^L(x) - y(x) \)
 - The difference between the output & desired output
 - Explains the \(\frac{1}{2} \) in LMS
Output Layer (cont.)

- $\sigma'(z_j^L)$ is the derivative of the non-linear transfer function at z_j^L
- If $\sigma(x) = \tanh(x)$, $\sigma'(x) = 1 - \tanh^2(x)$
- If $\sigma(x) = (1 + e^{-x})^{-1}$,
 \[
 \sigma'(x) = \sigma(x)(1 - \sigma(x))
 \]
- $\delta_j^L = \left(a_j^L(x) - y(x) \right) \left(1 - \tanh^2 \left(z_j^L(x) \right) \right)$ or
- $\delta_j^L = \left(a_j^L(x) - y(x) \right) \left(a_j^L(x) \left(1 - a_j^L(x) \right) \right)$
\(\delta^L \) given \(\delta^{L+1} \)

- \(\delta^l_j = \sigma'(z^l_j) \sum_k w^l_{kj} \delta^{l+1}_k \)
- \(\sigma' \) is computed as on previous slide
- The RHS is just the sum of the impacts
- This is where \textit{backpropagation} comes from
 - Calculate \(\delta \)'s for output layer
 - Then recursively compute \(\delta \)'s for previous layers
Computing δs...

Layer 1

Layer 2

Layer 3

Cost

Compute intermediate δs (slide #12)

Compute output layer δs (slide #11)
So...

• Given an input x and output y:
 – We can compute δ^l_j for every node j at every level l
 – Minimizing the δs will optimize the network
 • Relative to this sample
 – So we need to adjust the weights w_i and b to reduce the δs
 • But just a little for each input/output pair
 • So we can optimize across all samples
Adjusting b

• Remember that $\delta_j^l \equiv \frac{\partial c}{\partial z_j^l}$ (slide #8)

• And that $z_j^l = w_j^l x + b$

• So $\frac{\partial c}{\partial b_j^l} = \delta_j^l$

• So $b_j^l \leftarrow (1 - \alpha)b_j^l - \alpha \delta_j^l$

 – Where α is a learning rate

 – Regulates how much you react to each sample
Adjusting w’s

• \(\frac{\partial c}{\partial w_{jk}^l} = a_{k}^{l-1} \delta_{j}^{l} \)

• So \(w_{jk}^l \leftarrow (1 - \alpha)w_{jk}^l - \alpha a_{k}^{l-1} \delta_{j}^{l} \)

 – Where \(\alpha \) is the same learning rate as before

 – We are collectively minimizing the deltas by heading downhill in the \(k+1 \) dimensional space defined by \(w \) & \(b \)
Backpropagation (redux)

• Backpropagation updates weights in a network, given
 – Training samples
 – Training labels
 – An cost function

• Network nodes may be
 – Non-linear perceptrons (the most common)
 – Convolutional units
 – Pooling units
 – Batch normalization units
 – …