Geometric
Image Manipulation

Lecture #4
Friday, February 1, 2019

‘ t#1

ignmen

Ing AsS

(2

Programm

Image Manipulation: Context

* To start with the obvious, an image is a 2D array of pixels

— Pixel locations represent points on the image plane

— Pixel values represent measurements of light
* Color images : energies by frequency ranges (RGB: three overlapping ranges)
* Intensity images : average energy across the visible range

— Building ray tracers should have taught you about image formation

* To directly compare two images, they should be registered

— Geometrically : image 1 should “lines up with” image 2
— Photometrically : equal pixel values should imply equal energy

e Colorado State University
—— ——— > R

Geometric Registration

* It’s not enough for two matching images to
have the same set of pixel values

Image from CalTech256 data set

Otherwise, these two images match!
Colorado State University

Geometric Registration (II)

* Geometric registration finds a mapping that
maps one 1image onto the other

— We will Iimit ourselves to linear transformatmn

Registration formalism

* We denote an image as a 2D function I(x, y)
* Or, in homogeneous coordinates, I (x, y, w)
* (G1ven

— two 1mage I; and [;

— Matching points {(u,v),...} & {(X,y),..

— Find G such that I;(u, v,w) = [; ([D

s Colorado State University
P T— ~-A___— —

Interpolation (foreshadow...)

e Seldom get integer-to-
integer mappings INERN
| AYANNVANR
 Geometry part Qo.mputes AL N7
real-valued positions of A~ / WA :
pixel centers. RVYANINQAYD
e We will worry about / ><7<\ /7\74 / \/\ Vi
how to interpolate S /<<Z< Vﬂ > \%S
values later. =~ AL A S
LN/ TAY
N AR/

Classes of Image Transformations
* Rigid transformations

— Combine rotation and translation
— Preserve relative distances and angles

— 3 Degrees of freedom

* Similarity transformations
— Add scaling to rotation and translation

— Preserves relative angles

— 4 Degrees of freedom

s Colorado State University

Building Blocks: Rotation

* Trigonometric version

u
v

1

cos(®) —sin(®) 0 |1
sin(®) cos(®) 0 || y
0 o 1|1

* Projection onto basis vectors

) o, U, 0 .
V=‘71‘72
1 0 0 1

—=—__">

B Colorado State University

Building Blocks: Scaling

. Umform scahng

s 0 O X

= 0 s O y

1 0 0 1 | 1

e Non- umform scahng
w1 se 0 0 4

v [=] O S, 0 y
Lo o 1|1

’. OState University

Building Blocks: Translation

v

1

[

X

10
0 1 1,
0 0 1

X
Y

1

Recall how homogenous coordinates
formulates translation as a matrix

multiply
O=MP

Colorado

te University
S—

Seeing Transformations in Code

docs.opencv.org/3.0-beta/doc/py_tutorials/py i

OpenCV 3.0.0-dev documentation » OpenCV-Python Tutorials » Image Processing in OpenCV » previous | next | index

Geometric Transformations of Images

Goals
e Learn to apply different geometric transformation to images like translation, rotation,
affine transformation etc.

* You will see these functions: cv2.getPerspectiveTransform D CV

Transformations

OpenCV provides two transformation functions, cv2.warpAffine and cv2.warpPerspective, with which you Quick search
can have all kinds of transformations. cv2.warpAffine takes a 2x3 transformation matrix while

cv2.warpPerspective takes a 3x3 transformation matrix as input. Go
Scaling
Scaling is just resizing of the image. OpenCV comes with a function cv2.resize() for this purpose. The size Table Of Contents
of the image can be specified manually, or you can specify the scaling factor. Different interpolation Geometric Transformations of
methods are used. Preferable interpolation methods are cv2.INTER_AREA for shrinking and Images
cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR for zooming. By default, interpolation method used is » Goals
cv2.INTER_LINEAR for all resizing purposes. You can resize an input image either of following methods: » Transformations
» Scaling
import cv2 » Translation

| import numpy as np

» Ratatinn

State University

Translation Applied to Images

-~

Translate 20 in x Translate -20 in x

(1 0 20 1 0 =20
01 0 01 0
0 0 1| 0 0 1

s Colorado State University

Scale Applied to Images

Note
the

Scale Unlformly by 2
2 0 0
020
00 1

origin

Scale Uniformly by 0.5
05 0 0]
0 05 0
0 0 1]

@ Colorado State Um\/ er51ty

Rotation Applied to Images

| Rotate by 15° Rotate by -15°

Note that a positive rotation rotates the positive X axis
toward the positive Y axis

Composition of Matrices

To rotate by 0 around a point (x,y):

1 0

0 1

0 0

[1 0

0 1

0 0

— cos(6) —sin(6)
cos(6)
0

sin(@)

0

1l cos(6) —sin(6)

sin(@) cos(6)
0 0

1 cos(6) —sin(6)

sin(@) cos(6)
0 0

0
0
|

ysin(6) - xcos(6) -
—xsin(6)-ycos(0) |=

ysin(6) - xcos(0)+x -
—xsin(60) - ycos(0)+y

oS O -

1

Colorédo

“

0 —-x
I -y |=
0 1

te University
S—

Affine Transformations

* All the stmilarity transforms can be combined
Into ong generic matrix:
u (a b\c][*] Hint: diagonal
viNd e/ f||¥| terms are not
1 0O 0 11 equal, and b # -d.

 But! This matrix does more. What?

— hint: 2 more transformations. f-quivalent to adding 2
shear parameters,

— hint: 6 degrees of freedom. or unequal scaling & 1
shear parameter.

* How can you specify this matrix?
s Colorado State University

Affine Examples: Shear

e

AT L

5%
4‘2/

’() \-..' .,._’ - 14 "
LI

I%

1 0]
1 0
0 1

Similarity vs. Affine Matrices
* Similarity : 4 DOF

I

L9
S o &
— QL O

<

1 0
e Affine: 6 DOF _

<

|
S X Q
S N O
— S~ O

=

Specifying Affine Transformations

* There are six unknowns in the matrix (a through f)

* If you specify one point in the source image and a
corresponding point in the target image, that yields
two equations:

u, =ax, +by. +c
v, =dx, +ey, + f

* So providing three point-to-point correspondences
specifies an affine matrix

s Colorado State University

o
B
T

Affine Specification: Example

There is one affine transformation that will map the green
point on the right to the green point on the left, and align the
red and blue points also.

e Colorado State University
—— ——— > R

Solving Affine Transformations

These linear equations can be easily solved:

— WLOG, assume x;=y;=0 =% +by, +u,
u, =ax, +by, +u
— thenu;=candv,=f oo

q= u, —u, —by,
— SO: X,
. x3(u2_u1_by2)=u _u, —by
Calculation of a, b & ¢ X, o
is independent of oE. SRS OO M
calculation of e, f & g. x, 7y
X
u3—u1——3(u2—u1) () ()
b= Xy _ N \WUs — U,)= X5\, U,
M_% — X3V, = V3,
X

“

Solving Affine (cont.)

* This can be substituted in to solve for a

« The same process with " s solves for d,e,f
About the WLOG:

— It was true because you can translate the original coordinate system by
(X1, 1)
— So what do you do to compensate?
Alternatively, set up a system of linear equations and solve...
— Will show this for a harder case shortly....

Tutorial 6 - warpAfline

B
import cv2 o000 IPython: opencvPython/tutorial06 — ipython — 52x13
import numpy as np [features. B
$quickref -> Quick reference.
img = cv2.imread('CalTech_256_084_0082.7jpg') help -> Python's own help system.
object? -> Details about 'object', use 'object??'
6 def warpGiraffe() : for extra details.

cv2.namedWindow('imgsrc', cv2.WINDOW_NORMAL)
cv2.namedWindow('imgdst',cv2.WINDOW_NORMAL)

" In [1]: execfile('tutorialO6.py"')
rows,cols,chans = img.shape

ptsl = np.float32([[@,0],[0,300],[241,0]1]) | -0 [2]: warpGiraffe()

pts2 = np.float32([[30,301,[0,300],[241,011) L[0-87551867 0.1 30.

M = cv2.getAffineTransform(ptsl,pts2) [-0.12448133 0.9 30. 1]
print M

dst = cv2.warpAffine(img,M, (cols,rows)) In [3]: I

cv2.imshow('imgsrc',img) P ——
cv2.imshow('imgdst',dst) o000 imgdst

cv2.waitKey(0)

