Introduction to Fourier Analysis – Part 2

CS 510

Lecture #7

February 13, 2019

Graphic from http://www.mechatronics.colostate.edu/figures/4-4.jpg

Fourier Transform

Formally, the Fourier transform in 1D is:

$$F(u) = \int_{-\infty}^{+\infty} f(x) [\cos 2\pi ux - i \sin 2\pi ux] dx$$

Where:

u is an integer in the range from 0 to ∞

-i is used to create a 2D vector space

$$F(u) = a_u + ib_u$$

Inverse Fourier Transform

 What if I have F(u) for all u, and I want to recreate the original function f(x)?

Well, sum it up for every u:

$$f(x) = \int_{-\infty}^{+\infty} F(u) \left[\cos(2\pi ux) + i\sin(2\pi ux)\right] du$$

Discrete Fourier Transform

- Problem: an image is not an analogue signal that we can integrate.
- Therefore for $0 \le x < N$ and $0 \le u < N/2$:

$$F(u) = \sum_{x=0}^{N-1} f(x) \left[\cos \left(\frac{2\pi ux}{N} \right) - i \sin \left(\frac{2\pi ux}{N} \right) \right]$$

And the discrete inverse transform is:

$$f(x) = \frac{1}{N} \sum_{x=0}^{N-1} F(u) \left[\cos \left(\frac{2\pi ux}{N} \right) + i \sin \left(\frac{2\pi ux}{N} \right) \right]$$

Discrete vs. Continuous

- Summation replaces integration
- Division by N (the number of discrete samples) makes the unit of repetition 1.
- For any signal (continuous or discrete)
 - f(x) is called the spatial domain
 - F(u) is called the <u>frequency domain</u>

Spatial vs. Frequency

- Spatial domain representation size?
 - Given N samples, it is size N
- Frequency domain representation size?
 - A total of N/2 frequencies
 - Often plotted from –N/2 to N/2, but half are redundant
 - A complex number (2 values) per frequency
- The DFT is invertible, so the two representations are equivalent:
 - Exact same information and same size
 - The FFT is O(n log n)

Key Intuition: invertibility

An important intuition: "trimming" creates artifacts

An intuition for later...

Any frequency of the discrete Fourier transform

$$F(u) = \sum_{x=0}^{N-1} f(x) \left[\cos(\frac{2\pi ux}{N}) - i\sin(\frac{2\pi ux}{N}) \right]$$

Can be rewritten as a complex dot product:

$$F(u) = \left[\cos(2\pi u 0/N) - i\sin(2\pi u 0/N), \cdots, \right] \cdot \begin{bmatrix} f(0) \\ \vdots \\ f(N-1) \end{bmatrix}$$

So the Fourier transform is linear

An intuition ... (cont.)

The full transform is a matrix equation

Each circle represents a complex number; x is cosine, y is sine https://en.wikibooks.org/wiki/Digital Signal Processing/Discrete Fourier Transform

An intuition ... (part 3)

- This matrix has special properties
 - Every row is orthogonal to every other
 - Every row has length √N
 - It is a rotation and a scale of image space
 - The inverse Fourier counter-rotates and counter scales

2D Fourier Transform

- So far, we have looked only at 1D signals
- For 2D signals, the continuous generalization is:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \Big[\cos(2\pi(ux+vy)) - i\sin(2\pi(ux+vy)) \Big]$$

- Note that frequencies are now twodimensional
 - u= freq in x, v = freq in y
- Every frequency (u,v) has a real and an imaginary component.

2D sine waves

- This looks like you'd expect in 2D
- Note that the frequencies don't have to be equal in the two dimensions.

 $http://images.google.com/imgres?imgurl=http://developer.nvidia.com/dev_content/cg/cg_examples/images/sine_wave_perturbation_ogl.jpg&imgrefurl=http://developer.nvidia.com/object/cg_effects_explained.html&usg=__0FimoxuhWMm59cbwhch0TLwGpQM=&h=350&w=350&sz=13&hl=en&start=8&sig2=dBEtH0hp5I1BExgkXAe_kg&tbnid=fcyrlaatfp0P3M:&tbnh=120&tbnw=120&ei=llCYSbLNL4miMoQwoP8L&prev=/images%3Fq%3D2D%2Bsine%2Bwave%26gbv%3D2%26hl%3Den%26sa%3DG$

2/13/19

2D Discrete Fourier Transform

$$F(u,v) = \sum_{x=-N/2}^{N/2} \sum_{y=-N/2}^{N/2} f(x,y) \left[\cos \left(\frac{2\pi}{N} (ux + vy) \right) - i \sin \left(\frac{2\pi}{N} (ux + vy) \right) \right]$$

- What happened to the bounds on x & y?
- How big is the discrete 2D frequency space representation?

2D Frequency Space

- Remember that:
 - Cosine is an even function: cos(x) = cos(-x)
 - Sine is an odd function: sin(x) = -sin(-x)
- So
 - $F(u,v) = a+ib \Rightarrow F(-u, -v) = a-ib$
- And
 - $F(-u,v) = a+ib \Rightarrow F(u, -v) = a-ib$
- But
 - $F(u,v) = a+ib \Rightarrow F(-u, v) = ???$

2D Frequency Space (cont)

- Size of 2D Frequency representation:
 - One dimension must vary from –N/2 to N/2,
 while the other varies from 0 to N/2
 - Doesn't matter which is which
 - -N * (N/2) * 2 values per frequency = N²
 - Same as the source spatial representation

Showing Frequency Space

- To display a frequency space:
 - We plot it from –N/2 to N/2 in both dimensions
 - The result is symmetric about the origin (and therefore redundant)
 - We can't plot a complex number, so we show the magnitude at every pixel sqrt(a² + b²)
 - Thus discarding the phase information
 - Phase plots are also possible (tan-1(b/a))

Transform as Linear Operation

The full transform is a matrix equation

Each circle represents a complex number; x is cosine, y is sine https://en.wikibooks.org/wiki/Digital_Signal_Processing/Discrete_Fourier_Transform

Fourier as Linear Transform

 $(N+2) \times 1$

 $(N+2) \times 2N$

2N x 1

$$\begin{bmatrix} R(F(0)) \\ I(F(0)) \\ R(F(1)) \\ I(F(1)) \\ \vdots \\ R(F(\frac{N}{2})) \\ I(F(\frac{N}{2})) \end{bmatrix} = \begin{bmatrix} \cos(0) & 0 & \cos(0) & 0 & \cdots & \cos(0) & 0 \\ 0 & \sin(0) & 0 & \sin(0) & \cdots & 0 & \sin(0) \\ \cos\left(\frac{2\pi \cdot 0}{N}\right) & 0 & \cos\left(\frac{2\pi \cdot 1}{N}\right) & 0 & \cdots & \cos\left(\frac{2\pi \cdot (N-1)}{N}\right) & 0 \\ 0 & \sin\left(\frac{2\pi \cdot 0}{N}\right) & 0 & \sin\left(\frac{2\pi \cdot 1}{N}\right) & \cdots & 0 & \sin\left(\frac{2\pi \cdot (N-1)}{N}\right) \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ I(N-1) \\ I(N-1) \\ I(N-1) \end{bmatrix} = \begin{bmatrix} I(0) \\ I(0) \\ I(1) \\ I(1) \\ \vdots \\ I(N-1) \\ I(N-1) \end{bmatrix}$$

In OpenCV – Fourier Tutorial

Helpful Images and Examples

Non-local properties

- Change one spatial pixel in an image, every frequency value changes
- Change one value in the frequency domain, every spatial pixel changes.
- Frequencies describe the image as a whole, not useful for describing part of an image

XKCD

Review: Why Study Fourier?

- Relates continuous to discrete
 - Continuous: underlying signal
 - Discrete: sampling of signal
- Tells us how much information is lost
 - Total energy in continuous frequencies above
 N/2
- Explains aliasing

The Nyquist Rate

- What if the frequency is above N/2?
 - You have fewer than one sample per halfcycle
 - High frequencies look like lower frequencies

Graphic from "Computer Graphics: Principles and Practice" by Foley, van Dam, Feiner & Hughes.

Aliasing – Another View

