Image Matching

Lecture #8 February 18, 2019

How do we (directly) compare two images?

Are these images the same? Are they similar?

<u>Colorado State University</u>

CS 510 ©Ross Beveridge & Bruce Draper

Pixel-wise Comparison

Or, normalized by image area, about 5 grey values per pixel.

$$8,140 = \sum_{x}^{x<148} \sum_{y}^{y<161} |A(x,y) - B(x,y)|$$

CS 510 ©Ross Beveridge & Bruce Draper

<u>Colorado State University</u>

Backup - what is "Similarity"?

Consider two vectors/points.

$$X = \begin{vmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{vmatrix} Y = \begin{vmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{vmatrix}$$

Distance vs. similarity: $S : R^n \times R^n \rightarrow R$ $D : R^n \times R^n \rightarrow R$ Euclidean (L2) Distance City Block (L1) Distance Pearson's Correlation Slightly Less Common

Common Approaches

Mahalanobis Distance

Mutual Information

<u>Colorado State Universit</u>

 $S \propto \frac{1}{D}$

CS 510 ©Ross Beveridge & Bruce Draper

Simple Distances (norms)

L₁ - City Block Distance

$$\sum_{x,y} \left(\left| A(x,y) - B(x,y) \right| \right)$$

- L₂ Euclidean Distance
- L_{∞} Max Distance

$$\sqrt{\sum_{x,y}} \left(A[x,y] - B[x,y] \right)^2$$

$$\underset{x,y}{Max} |A[x,y] - B[x,y]|$$

Generalized L-norm

$$\sqrt{\sum_{x,y}} \left(\left| A(x,y) - B(x,y) \right| \right)^{l}$$

Properties of L1 Distance

Consider the following problem:

Find the unique point "closest" to k other points.

For simplicity, do this in R (a line) with k = 2.

CS 510 ©Ross Beveridge & Bruce Draper

In Comparison, Consider L2

Find the unique point "closest" to k other points.

Pearson's Correlation

$$\frac{\sum_{x,y} (A(x,y) - \overline{A}) (B(x,y) - \overline{B})}{\sqrt{\sum_{x,y} (A(x,y) - \overline{A})^2} \sqrt{\sum_{x,y} (B(x,y) - \overline{B})^2}}$$

What is the underlying model?

Assumptions of Correlation

$$\frac{\sum_{x,y} (A(x,y) - \overline{A}) (B(x,y) - \overline{B})}{\sqrt{\sum_{x,y} (A(x,y) - \overline{A})^2} \sqrt{\sum_{x,y} (B(x,y) - \overline{B})^2}}$$

- Two signals vary linearly
 - Constant shift to either signal has no effect.
 - Increased amplitude has no effect.
- This minimizes sensitivity to:
 - changes in (overall) illumination.
 - offset or gain.

Special Cases

 Any two linear functions with positive slope have correlation 1.

Colorado State Universit

– Only the sign of the slope matters.

- Any two linear functions with differently signed slopes have correlation -1.
 - This is called anti-correlation
 - Anti-correlation = correlation for prediction.
 - For matching, it may or may not be as good...
- Correlation undefined for slope = 0 (σ =0)

CS 510 ©Ross Beveridge & Bruce Draper

Correlation (cont.)

- For Images, correlation is sensitive to:
 - Translation
 - Rotation: in-plane and out-of-plane
 - Scale
- Because it ...
 - Assumes pixels align one atop the other.
 - Compares two images pixel by pixel.
- Translation handled by convolution

- Example, alignment by template matching

<u>Colorado State Universit</u>

Computing Correlation

- Remember adding a constant does not change correlation to any other signal, so
 - Let's subtract average A from A()
 - Let's subtract average B from B()
 - The mean of both signals is now zero
 - Then correlation reduces to:

$$\frac{A \cdot B}{\sqrt{\sum_{x,y} (A(x,y) - \overline{A})^2} \sqrt{\sum_{x,y} (B(x,y) - \overline{B})^2}}$$

Computing Correlation (II)

- For zero-mean signals, we can scale them without changing their correlation scores
 - Multiply A by the inverse of its length
 - Multiply B by the inverse of its length
 - Both signals are now unit length
 - Then correlation reduces to:

$A \cdot B$

Colorado State Universit

Gives rise to 'Correlation Space'.

Correlation Space

- Why zero-mean & unit-length images?
- Consider database retrieval
 - Compare new image A ...
 - with many images in database.
 - When database images are stored in their zero-mean & unit-length form, then
 - Preprocess A (zero-mean, unit-length)
 - Compute dot products

Correlation Space (II)

- New idea: image as a point in an N dimensional space
 - N = width x height
- Zero-mean & unit-length images lie on an N-1 dimensional "correlation space" where the dot product equals correlation.
 - This is a highly non-linear projection.
 - Points lie on an N-1 surface within the original N dimensional space.

Colorado State Universit

• So consider points in 3-D

Correlation Space (II)

- Subtracting mean translation.
- Length one project onto sphere.
- Correlation is then:
 - Cosine of angle between vectors (points).

Useful Connection ...

• Euclidean distance inverse of correlation in correlation space.

$$\sqrt{\sum_{x,y} \left(A[x,y] - B[x,y]\right)^2} = \sqrt{\sum_{x,y} A[x,y]^2 + \sum_{x,y} B[x,y]^2 - 2A[x,y]B[x,y]}$$
$$= \sqrt{1 + 1 - 2\sum_{x,y} A[x,y]B[x,y]}$$
$$= \sqrt{2 - 2A \cdot B}$$
$$= \sqrt{2 - 2Corr(A,B)}$$

Nearest-neighbor classifiers in correlation space maximize correlation

Limitations

- To match images this way, they must be

 The same width & height
 In correspondence : coordinates match
- More importantly, objects in the scene must
 - Be in the same location
 - Be at the same scale
 - Be at the same orientation
 - Be seen from the same viewpoint

Find similar patterns in a larger image

 The image above is a small piece of the image to the right. But from where?

Brute-Force Translation Invariance

To find a small image in a large one, "slide" the small one across the large, computing Pearson's correlation at every possible position.

Statistical Cross-Correlation

- The process of "slide & correlate" is called crosscorrelation
- Complexity is O(nm)
 - N = # of pixels in image (w×h)
 - M = # of pixels in the template (w×h)
- Highly parallel (every position can be computed independently)
- Still sensitive to
 - Rotation
 - in-plane
 - out-of-plane
 - Scale
 - Perspective

Computing Cross-Correlation

- In cross-correlation, the mask is correlated repeatedly to image windows
 - zero-mean & unit length the mask
 - zero-mean & unit length the image
 - compute the sliding dot product

This is *almost* convolving the image with the mask

Colorado State Universit

CS 510 ©Ross Beveridge & Bruce Draper

Naming conventions

- In Engineering, convolving a normalized mask with the source image is called correlation
 - Is this exactly the same as Pearson's correlation?
 - Why or why not?
- This is the most common definition of correlation in image processing texts

Application: Tracking

- Cut out a picture of a target from the first frame of a video
 - Use it as a template /mask
- Correlate the target in the following frames

 Find the location with the highest correlation
- Improvement:
 - update target with each new frame

Application: Tracking

Application: Mosaicing

 Take several, overlapping images from a translating camera

- Camera cannot move along optical axis

- Correlate the whole images to each other
 - Find location where they match the best
 - Stitch them into a single, larger image

Mosaicing (II)

Image 1

Image 2

Image 3

Colorado State University

28

In OpenCV

$\bullet \bullet \bullet \checkmark \blacksquare$	Image: Book of the state of
G	Object Detection — OpenCV 2.4.13.5 documentation
	matchTemplate
	Compares a template against overlapped image regions.
OpenCV	C++: void matchTemplate(InputArray image, InputArray templ, OutputArray result, int method)
Search	Python: cv2.matchTemplate(image, templ, method[, result]) → result
Hide Search Matches	C: void cvMatchTemplate(const CvArr* image, const CvArr* templ, CvArr* result, int method)
Table Of Contents Object Detection • matchTemplate	Python: cv.MatchTemplate(image, templ, result, method) → None
Previous topic Feature Detection	 Parameters: • image – Image where the search is running. It must be 8-bit or 32-bit floating-point. templ – Searched template. It must be not greater than the source
Next topic highgui. High-level GUI and Media I/O	 result – Map of comparison results. It must be single-channel 32-bit floating-point. If image is W × H and temp1 is w × h, then result is (W - w + 1) × (H - h + 1).
This Page Show Source	 method – Parameter specifying the comparison method (see below).
	The function slides through image, compares the overlapped patches of size $w \times h$ against

2/18/19

CS 510 ©Ross Beveridge & Bruce Draper

30