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How do we (directly) 
compare two images?
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Are these images the same?   Are they similar?

A B



€ 

8,140 = A x, y( )− B x, y( )  
y

y<161

∑
x

x<148

∑

Pixel-wise Comparison

2/18/19 CS 510 ©Ross Beveridge & Bruce Draper 3

A B

Or, normalized by image area, about 5 grey values per pixel.



Consider two vectors/points.

Backup - what is “Similarity”?

2/18/19 CS 510 ©Ross Beveridge & Bruce Draper 4

Common Approaches

Euclidean (L2) Distance

City Block (L1) Distance

Pearson’s Correlation

Slightly Less Common

Mahalanobis Distance

Mutual Information

X =

x1

x2

...
xn

   Y =

y1

y2

...
yn

      

€ 

S  :  Rn  ×  Rn →R
D  :  Rn  ×  Rn →R

S ∝ 1
D

Distance vs. similarity:



Simple Distances (norms)
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L1 - City Block Distance

L2 - Euclidean Distance

Generalized L-norm

A x, y[ ]−B x, y[ ]( )
2

x,y
∑

€ 

x,y
∑ A x,y( ) − B x,y( )( )ll

€ 

A x,y( ) − B x,y( )( )
x,y
∑

L∞ - Max Distance Max
x,y

A x, y[ ]−B x, y[ ]
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½-½ 1-1

L1 Distance
L2 Distance
L∞

L½

Curves shown 
are the set of 
points that are 
‘one unit’ from 
the origin using 
different 
definitions of 
distance.



Properties of L1 Distance
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Consider the following problem:

Find the unique point “closest” to k other points.

For simplicity, do this in R (a line) with k = 2.

2 8?

See the problem yet?

€ 

2 − 3 + 8 − 3 = 6

€ 

2 − 4 + 8 − 4 = 6



In Comparison, Consider L2
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Find the unique point “closest” to k other points.

2 8?

Using L2, 

2 85

Best Not as Good

€ 

2 − 5( )2 + 8 − 5( )2 = 18

€ 

2 − 4( )2 + 8 − 4( )2 = 20



Pearson’s Correlation
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What is the underlying model?
€ 

A x,y( ) − A ( ) B x,y( ) − B ( )
x,y
∑

A x,y( ) − A ( )2
x,y
∑ B x,y( ) − B ( )2

x,y
∑



Assumptions of Correlation

• Two signals vary linearly
– Constant shift to either signal has no effect. 
– Increased amplitude has no effect. 

• This minimizes sensitivity to:
– changes in (overall) illumination. 
– offset or gain.
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€ 

A x,y( ) − A ( ) B x,y( ) − B ( )
x,y
∑

A x,y( ) − A ( )2
x,y
∑ B x,y( ) − B ( )2

x,y
∑



Special Cases
• Any two linear functions 

with positive slope have 
correlation 1. 
– Only the sign of the slope matters.

• Any two linear functions with differently signed 
slopes have correlation -1.
– This is called anti-correlation
– Anti-correlation = correlation for prediction.
– For matching, it may or may not be as good…

• Correlation undefined for slope = 0 (s=0)
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Correlation (cont.)
• For Images, correlation is sensitive to:

– Translation
– Rotation: in-plane and out-of-plane
– Scale

• Because it …
– Assumes pixels align one atop the other. 
– Compares two images pixel by pixel.

• Translation handled by convolution
– Example, alignment by template matching
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Computing Correlation
• Remember adding a constant does not 

change correlation to any other signal, so
– Let’s subtract average A from A()
– Let’s subtract average B from B()
– The mean of both signals is now zero
– Then correlation reduces to:
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€ 

A⋅ B

A x,y( ) − A ( )2
x,y
∑ B x,y( ) − B ( )2

x,y
∑



Computing Correlation (II)
• For zero-mean signals, we can scale them 

without changing their correlation scores
– Multiply A by the inverse of its length
– Multiply B by the inverse of its length
– Both signals are now unit length
– Then correlation reduces to:

• Gives rise to ‘Correlation Space’.
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€ 

A⋅ B



Correlation Space
• Why zero-mean & unit-length images?
• Consider database retrieval

– Compare new image A …
– with many images in database.
– When database images are stored in their 

zero-mean & unit-length form, then 
– Preprocess A (zero-mean, unit-length)
– Compute dot products
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Correlation Space (II)
• New idea: image as a point in an N 

dimensional space
• N = width x height

• Zero-mean & unit-length images lie on an N-
1 dimensional “correlation space” where the 
dot product equals correlation.
– This is a highly non-linear projection.
– Points lie on an N-1 surface within the original N 

dimensional space.
• So consider points in 3-D ….
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Correlation Space (II)
• Subtracting mean - translation.
• Length one - project onto sphere.
• Correlation is then:

– Cosine of angle between vectors (points).
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Useful Connection …
• Euclidean distance inverse of correlation 

in correlation space.
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Nearest-neighbor classifiers in correlation space maximize correlation
€ 

A x,y[ ] − B x,y[ ]( )2
x,y
∑ = A x,y[ ]2

x,y
∑ + B x,y[ ]2 − 2A x,y[ ]B x,y[ ]

x,y
∑

= 1+1− 2 A x,y[ ]B x,y[ ]
x,y
∑

= 2 − 2A⋅ B

= 2 − 2Corr A,B( )



Limitations
• To match images this way, they must be

– The same width & height
– In correspondence : coordinates match

• More importantly, objects in the scene 
must
– Be in the same location
– Be at the same scale
– Be at the same orientation
– Be seen from the same viewpoint 
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Find similar patterns in a larger 
image

• The image above is a 
small piece of the image 
to the right. But from 
where?
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Brute-Force Translation Invariance
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To find a small image in a large one, 
“slide” the small one across the large, 
computing Pearson’s correlation at 
every possible position.



Statistical Cross-Correlation
• The process of “slide & correlate” is called cross-

correlation
• Complexity is O(nm) 

– N = # of pixels in image (w´h)
– M = # of pixels in the template (w´h)

• Highly parallel (every position can be computed 
independently)

• Still sensitive to 
– Rotation

• in-plane
• out-of-plane

– Scale
– Perspective
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Computing Cross-Correlation
• In cross-correlation, the mask is correlated 

repeatedly to image windows
– zero-mean & unit length the mask
– zero-mean & unit length the image

– compute the sliding dot product

2/18/19

This is almost convolving the 
image with the mask
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Naming conventions
• In Engineering, convolving a normalized 

mask with the source image is called 
correlation
– Is this exactly the same as Pearson’s 

correlation?
– Why or why not?

• This is the most common definition of 
correlation in image processing texts
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Application: Tracking

• Cut out a picture of a target from the first 
frame of a video
– Use it as a template /mask

• Correlate the target in the following frames
– Find the location with the highest correlation

• Improvement: 
– update target with each new frame
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Application: Tracking

2/18/19 CS 510 ©Ross Beveridge & Bruce Draper 26



Application: Mosaicing

• Take several, overlapping images from a 
translating camera
– Camera cannot move along optical axis

• Correlate the whole images to each other
– Find location where they match the best
– Stitch them into a single, larger image
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Mosaicing (II)
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In OpenCV
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Example
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