Image Matching

Lecture \#8
February 18, 2019

How do we (directly) compare two images?

Are these images the same? Are they similar?

Pixel-wise Comparison

Or, normalized by image area, about 5 grey values per pixel.

$$
8,140=\sum_{x}^{x<148} \sum_{y}^{y<161}|A(x, y)-B(x, y)|
$$

2/18/19

Backup - what is "Similarity"?

Consider two vectors/points.

$$
X=\left|\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right| Y=\left|\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right|
$$

Distance vs. similarity:

$$
\begin{aligned}
& S: R^{n} \times R^{n} \rightarrow R \\
& D: R^{n} \times R^{n} \rightarrow R
\end{aligned}
$$

$S \propto 1 / D$

Common Approaches
Euclidean (L2) Distance
City Block (L1) Distance
Pearson's Correlation
Slightly Less Common
Mahalanobis Distance
Mutual Information

Simple Distances (norms)

L_{1} - City Block Distance

$$
\sum_{x, y}(|A(x, y)-B(x, y)|)
$$

L_{2} - Euclidean Distance
L_{∞} - Max Distance

$$
\sqrt{\sum_{x, y}(A[x, y]-B[x, y])^{2}}
$$

Generalized L-norm
$\sqrt[y]{\sum_{x, y}(|A(x, y)-B(x, y)|)^{l}}$
L_{1} Distance L_{2} Distance

Curves shown are the set of points that are 'one unit' from the origin using different definitions of distance.

Colorado State University

Properties of L1 Distance

Consider the following problem:
Find the unique point "closest" to k other points.
For simplicity, do this in R (a line) with $\mathrm{k}=2$.

See the problem yet?

$$
|2-3|+|8-3|=6 \quad|2-4|+|8-4|=6
$$

In Comparison, Consider L2

Find the unique point "closest" to k other points.

Using L2,

$$
\sqrt{(2-5)^{2}+(8-5)^{2}}=\sqrt{18} \quad \sqrt{(2-4)^{2}+(8-4)^{2}}=\sqrt{20}
$$

Best
Not as Good

Pearson's Correlation

$$
\frac{\sum_{x, y}(A(x, y)-\bar{A})(B(x, y)-\bar{B})}{\sqrt{\sum_{x, y}(A(x, y)-\bar{A})^{2}} \sqrt{\sum_{x, y}(B(x, y)-\bar{B})^{2}}}
$$

What is the underlying model?

Assumptions of Correlation

$$
\frac{\sum_{x, y}(A(x, y)-\bar{A})(B(x, y)-\bar{B})}{\sqrt{\sum_{x, y}(A(x, y)-\bar{A})^{2}} \sqrt{\sum_{x, y}(B(x, y)-\bar{B})^{2}}}
$$

- Two signals vary linearly
- Constant shift to either signal has no effect.
- Increased amplitude has no effect.
- This minimizes sensitivity to:
- changes in (overall) illumination.
- offset or gain.

Special Cases

- Any two linear functions with positive slope have correlation 1.

- Only the sign of the slope matters.
- Any two linear functions with differently signed slopes have correlation -1.
- This is called anti-correlation
- Anti-correlation = correlation for prediction.
- For matching, it may or may not be as good...
- Correlation undefined for slope $=0(\sigma=0)$

Correlation (cont.)

- For Images, correlation is sensitive to:
- Translation
- Rotation: in-plane and out-of-plane
- Scale
- Because it ...
- Assumes pixels align one atop the other.
- Compares two images pixel by pixel.
- Translation handled by convolution
- Example, alignment by template matching

Computing Correlation

- Remember adding a constant does not change correlation to any other signal, so
- Let's subtract average A from A()
- Let's subtract average B from $B()$
- The mean of both signals is now zero
- Then correlation reduces to:

$$
\frac{A \cdot B}{\sqrt{\sum_{x, y}(A(x, y)-\bar{A})^{2}} \sqrt{\sum_{x, y}(B(x, y)-\bar{B})^{2}}}
$$

Computing Correlation (II)

- For zero-mean signals, we can scale them without changing their correlation scores
- Multiply A by the inverse of its length
- Multiply B by the inverse of its length
- Both signals are now unit length
- Then correlation reduces to:

$$
A \cdot B
$$

- Gives rise to 'Correlation Space'.

Correlation Space

- Why zero-mean \& unit-length images?
- Consider database retrieval
- Compare new image A ...
- with many images in database.
- When database images are stored in their zero-mean \& unit-length form, then
- Preprocess A (zero-mean, unit-length)
- Compute dot products

Correlation Space (II)

- New idea: image as a point in an N dimensional space
- $N=$ width x height
- Zero-mean \& unit-length images lie on an N 1 dimensional "correlation space" where the dot product equals correlation.
- This is a highly non-linear projection.
- Points lie on an $\mathrm{N}-1$ surface within the original N dimensional space.
- So consider points in 3-D

Correlation Space (II)

- Subtracting mean - translation.
- Length one - project onto sphere.
- Correlation is then:
- Cosine of angle between vectors (points).

Useful Connection ...

- Euclidean distance inverse of correlation in correlation space.

$$
\begin{aligned}
\sqrt{\sum_{x, y}(A[x, y]-B[x, y])^{2}} & =\sqrt{\sum_{x, y} A[x, y]^{2}+\sum_{x, y} B[x, y]^{2}-2 A[x, y] B[x, y]} \\
& =\sqrt{1+1-2 \sum_{x, y} A[x, y] B[x, y]} \\
& =\sqrt{2-2 A \cdot B} \\
& =\sqrt{2-2 \operatorname{Corr}(A, B)}
\end{aligned}
$$

Nearest-neighbor classifiers in correlation space maximize correlation

Limitations

- To match images this way, they must be
- The same width \& height
- In correspondence : coordinates match
- More importantly, objects in the scene must
- Be in the same location
- Be at the same scale
- Be at the same orientation
- Be seen from the same viewpoint

Find similar patterns in a larger

 image

- The image above is a small piece of the image to the right. But from where?

Brute-Force Translation Invariance

To find a small image in a large one, "slide" the small one across the large, computing Pearson's correlation at every possible position.

Statistical Cross-Correlation

- The process of "slide \& correlate" is called crosscorrelation
- Complexity is $\mathrm{O}(\mathrm{nm})$
$-N=\#$ of pixels in image $(w \times h)$
$-M=\#$ of pixels in the template ($w \times h$)
- Highly parallel (every position can be computed independently)
- Still sensitive to
- Rotation
- in-plane
- out-of-plane
- Scale
- Perspective

Computing Cross-Correlation

- In cross-correlation, the mask is correlated repeatedly to image windows
- zero-mean \& unit length the mask
- zero-mean \& unit length the image
- compute the sliding dot product

> This is almost convolving the image with the mask

Naming conventions

- In Engineering, convolving a normalized mask with the source image is called correlation
- Is this exactly the same as Pearson's correlation?
- Why or why not?
- This is the most common definition of correlation in image processing texts

Application: Tracking

- Cut out a picture of a target from the first frame of a video
- Use it as a template /mask
- Correlate the target in the following frames
- Find the location with the highest correlation
- Improvement:
- update target with each new frame

Application: Tracking

ColoradoState University

Application: Mosaicing

- Take several, overlapping images from a translating camera
- Camera cannot move along optical axis
- Correlate the whole images to each other
- Find location where they match the best
- Stitch them into a single, larger image

Mosaicing (II)

Image 1

Image 2

Image 3

In OpenCV

Example

N $\leftarrow \rightarrow$ 中

ColoradoState University

