
Investigating Quality Factors in Object-Oriented Designs:
an Industrial Case Studv

Lionel C. Briand, Jiirgen Wiist
Fraunhofer Institute for

Experimental Software Engineering
Sauerwiesen 6

6766 1 Kaiserslautern, Germany
+496301707251

{briand,wuest}@iese.fbg.de

ABSTRACT
This paper aims at empirically exploring the relationships
between most of the existing coupling and cohesion meas-
ures for object-oriented (00) systems, and the fault-
proneness of 00 system classes. The underlying goal of
such a study is to better understand the relationship be-
tween existing design measurement in 00 systems and the
quality of the software developed.

The study described here is a replication of an analogous
stt.& conducted in an university environment with systems
developed by students. In order to draw more general con-
clusions and to (dis)conJirm the results obtained there, we
now replicated the study using data collected on an indus-
trial system developed by professionals.

Resul?s show that many of our Jindings are consistent
across systems, despite the very disparate nature of the
systems under stu& Some of the strong dimensions cap-
tured by the measures in each data set are visible in both
the university and industrial case stua’y. For example, the
frequency of method invocations appears to be the main
driving factor of fault-proneness in all systems. However,
there are also differences across studies which illustrate
the fact that quality does not follow universal laws and that
quality models must be developed locally, wherever needed.

Keywords
metrics, measurement, empirical validation, coupling, co-
hesion, object-oriented.
1 INTRODUCTION
A large number of object-oriented (00) measures have
been proposed in the literature ([2], [8], [9], [lo], [13], [15],
[17], [18]). A particular emphasis was given to the meas-
urement of design artifacts, in order to help assess quality
early on during the development process. However, many
of the measures proposed and their relationships to external
quality attributes of 00 designs, have been the focus of
little empirical investigation ([l], [2], [3], [17]). It is there-
fore difftcult to assess whether these measures capture
similar dimensions and are indicators of any relevant qual-

Permission to make digital or hard copies of all or part of this work lb1
personal or classroom use is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the l’ull citation on the first page. To copy
otherwise, to republish, to post on servers or to rcdistrihutc to lists.
rcquircs prior specific permission andior a fee.

ICSE ‘99 Los Angclcs CA
Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

Stefan V. Ikonomovski, Hakim Lounis
Centre de Recherche

Informatique de Montreal
550, Sherbrooke West, Suite 100
Mont&al, Qc, Canada H3A lB9

+l 514 840-1234
{ sikonomo, hlounis} @crim.ca

ity attribute at all.
Recently, some of the authors performed an in-depth, com-
prehensive analysis of most of the literature 00 measures
on students’ projects [3] of rather small sizes. The goal was
to look at the relationship between these measures and the
likelihood of detecting a fault in a class during testing, i.e.,
its fault-proneness. The high cognitive complexity of
classes may result in many different types of problems such
as low maintainability or high fault-proneness. However,
fault-proneness is not only one important quality aspect
related to class cognitive complexity but also the easiest
one to observe and measure, hence its use in our studies.
In order to draw more general conclusions and (dis)contirm
the results obtained in our student experiments, we replicate
here this analysis on data we collected on an industrial
project which is currently under use and maintenance. By
analyzing carefully the results and by comparing them in a
systematic way with the results obtained from the students’
projects, we identified a number of structural dimensions in
00 designs that appear to be related to class fault-
proneness across the two data sets. Considering the signiti-
cant differences between the students’ systems and the in-
dustrial system studied here (e.g., in terms of size, domain,
programmer experience), we hope to draw conclusions that
should be robust across many systems. Further replication
is of course necessary to build an adequate body of knowl-
edge regarding the use of 00 design measures.
The paper is organized as follows. Section 2 describes the
goals and setting of the empirical study, and the data col-
lected. Section 3 describes the methodology used to analyze
the data. The results of this analysis are then presented in
Section 4, where we also compare the results to those ob-
tained for the students’ systems in [3]. We draw our con-
clusions in Section 5.
2 THE EMPIRTCAL STUDY
The goal of this study is to empirically assess the object-
oriented design measures discussed in a literature review
[5][6], and compare the results to those obtained in an
analogous study using systems developed by students.
2.1 Dependent Variable
We want to evaluate whether existing measures are useful
for predicting the probability that a fault occurs in a class
during operation of the system. More precisely, the prob-
ability of fault detection that is meant here is a conditional
probability: the probability that at least one fault is regis-

345

Name Definition Src.
CBO Coupling between object classes. According to the definition of this measure, a class is coupled to another, if methods of [I @J

one class use methods or attributes of the other, or vice versa. CBO is then defined as the number of other classes to
which a class is coupled. This includes inheritance-based coupling (coupling between classes related via inheritance).

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [91
RFC, Response set for class. The response set of a class consists of the set M of methods of the class, and the set of methods [9]

directly or indirectly invoked by methods in M. In other words, the response set is the set of methods that can potentially
be executed in response to a message received by an object of that class. RFC is the number of methods in the response
set of the class.

F@Cl Same as RFC,, except that methods indirectly invoked by methods in M are not included in the response set. I.101
MPC Message passing coupling. The number of method invocations in a class. i-171
DAC Data abstraction coupling. The number of attributes in a class that have another class as their type. [I71
DAC’ The number of different classes that are used as types of attributes in a class. [I71
ICP Information-flow-based coupling. The number of method invocations in a class, weighted by the number of parameters [181

of the invoked methods.
IH-ICP As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance-based coupling) only. V81
NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [181
IFCAIC
ACAIC

These coupling measures are counts of interactions between classes. The measures distinguish the relationship between [2]

OCAIC
classes (friendship, inheritance, none), different types of interactions, and the locus of impact of the interaction.

FCAEC The acronyms for the measures indicates what interactions are counted:

DCAEC l The first or first two letters indicate the relationship (A: coupling to ancestor classes, D: Descendents, F: Friend
OCAEC classes, IF: Inverse Friends (classes that declare a given class c as their friend), 0: Others, i.e., none of the other rela-
IFCMIC tionships).
ACMIC l The next two letters indicate the type of interaction:
OCMIC l
FCMEC

CA: There is a Class-Attribute interaction between classes c and d, if c has an attribute of type d.

DCMEC l CM: There is a Class-Method interaction between classes c and d, if class c has a method with a parameter of type
OCMEC class d.
IFMMIC l MM: There is a Method-Method interaction between classes c and d, if c invokes a method of d, or if a method of
AMMIC class d is passed as parameter (function pointer) to a method of class c.
OMMIC l

FMMEC
The last two letters indicate the locus of impact:
l

DMMEC
IC: Import coupling, the measure counts for a class c all interactions where c is using another class.

OMMEC l EC: Export coupling: count interactions where class d is the used class.
-..a- . .
1 aule 1: uoupung measures

tered during operation in a class, depending on the obtained
measurement values of the independent variables for that
class. This should be a good indicator of its probability of
containing a fault and, therefore, a valid measure of fault-
proneness. The construct validity of our dependent variable
can thus be considered satisfactory.

Other measures such as class fault density could have been
used. However, the variability in terms of number of faults
in our data set is small: Faults were detected in 55% of the
classes, and 80% of the classes contain less than three
faults. Therefore, using a dependent variable with low vari-
ability would have affected our ability to identify signifi-
cant relationships between 00 design measures and this
dependent variable.

2.2 Independent Variables
The measures of coupling and cohesion identified in a lit-
erature survey on object-oriented design measures [5][6]
are the independent variables used in this study. We only
use measures defined at the class level, because this is also
the granularity at which the fault data was collected.

Tables 1 and 2 describe the coupling and cohesion meas-
ures used in this study. We list the acronym used for each
measure, informal definitions of the measures, and litera-
ture references where the measures originally have been
proposed. The informal natural language definitions of the
measures should give the reader a quick insight into the

measures. However, such definitions tend to be ambiguous.
Formal defmitions of the measures using a uniform and
unambiguous formalism are provided in [5][6], where we
also perform a systematic comparison of these measures,
and analyze their mathematical properties.

In order to make possible the use of these measures at the
design stage, we adapted some of the measures involving
counts of method invocations as follows. Measures that are
based on counts of multiple invocations of pairs of methods
(say methods m ’ and m) were changed to be soleIy sensitive
to the fact that a given method invokes another one at least
once. The rationale for this decision is, that the precise
number of times a given method m ’ invokes m is an infor-
mation which is available only after implementation is
completed, whereas the information that m’ invokes m is
usually available earlier during the design phase. The
measures affected by this simplification are MPC, the ICP
measures, the method-method interaction measures by Bri-
and et al [2], and ICH.

2.3 Description of the empirical study
This subsection provides details about the LALO system
and the fault data and design measurement data collected.

2.3. I Setting of the Study
The data were collected from an open multi-agent system
development environment, called LALO (Langage
d’Agents Logiciel Objet). This system has been developed

346

Name Definition i
SK.

LCOMl Lack of cohesion in methods. The number of pairs of methods in the class using no attribute in common. t91
LCOM2 is the number of pairs of methods in the class using no attributes in common, minus the number of pairs of [IO] LCOM2

LCOM3
methods that do. If this difference is negative. however. LCOM2 is set to zero.
Consider an undirected graph G, whereyhe vertices are’the methods of a class, and there is an edge between two vertices

I ,
[15j

LCOM4

co

LCOMS

Coh

TCC

LCC

ICH

if the corresponding methods use at least an attribute in common. LCOM3 is defined as the number of connected com-
ponents of G.
Like LCOM3, where graph G additionally has an edge between vertices representing methods M and n, if M invokes n or 1 [151
vice versa.
Connectivity. Let V be the number of vertices of graph G from measure LCOM4, and E the number of its edges. Then [151

co = q-4 - (IV] - 1>>K(pJ - NJVl - 2))
Consider a set of methods {Mi} (i=l,...,m) accessing a set of attributes {Aj} (j=l,...,a). Let p(Ai) be the number of meth- [15]

ods which reference attribute Ai Then LCOMS = i((x;=,p(,4i)) - m)l(l - m)

A variation on LCOMS: Cob = (~~=,~(~,i))/(m.a)

Tight class cohesion. Besides methods using attributes directly (by referencing them), this measure considers attributes
indirectly used by a method. Method m uses attribute a indirectly, if m directly or indirectly invokes a method which
directly uses attribute a. Two methods are called connected, if they directly or indirectly use common attributes. TCC is
defined as the percentage of pairs of public methods of the class which are connected, i.e., pairs of methods which di-
rectly or indirectly use common attributes.
Loose class cohesion. Same as TCC, except that this measure also considers pairs of indirectly connected methods. If
there are methods ml,..., m,, such that mi and mi+l are connected for i=l,...,n-1, then ml and m, are indirectly connected.
Measure LCC is the percentage of pairs of public methods of the class which are directly or indirectly connected.
Information-flow-based cohesion. ICH for a method is defined as the number of invocations of other methods of the
same class, weighted by the number of parameters of the invoked method (cf. coupling measure ICP above). The ICH of 1
a class is the sum of the ICH values of its methods.

PI

VI

181

1181

Table 2: Cohesion Measures

and maintained since 1993 at GRIM (Centre de Recherche
Informatique de MontrBal); it includes 90 C++ classes with
approximately 40K source lines of code (SLOC). Classes
automatically generated by software tools, e.g., 00
lex/yacc are included in this amount. Therefore, in the
analysis below, these classes were not investigated since
they are much less likely to contain faults than classes im-
plemented manually. In fact, the use of these classes could
have biased the results.
In addition to the 90 application-specific classes, a number
of standard library classes for IO, threading, socket com-
munication, etc., are used in the LALO system.
LALO was mostly developed under Windows NT using
Visual C++ and then ported to Sun OS and Solaris. We
have investigated only the Sun OS version.
Six developers have worked on the LALO system over its
lifetime, with at most three developers working on the sys-
tem in parallel. All developers had several years of previ-
ous experience in system development, and four developers
have worked on 00 systems before.
2.3.2 Data Collection Procedures and Measurement

Instruments
The following relevant items were collected:

l the source code of the LALO system.
l data about faults found by world-wide users of LALO,

over a period of about one year.
A tool developed at the Fraunhofer IESE, and based on the
FAST parser technology of the SEMA group’s Con-

certo2/AUDIT tools [121, was used to extract the values for
the object-oriented measures directly from the source code
of LALO. To collect the fault data, change report forms
(CRF) were used to document the nature of each problem
reported by a LALO user, the names of the faulty C++
classes, and the type and location of the maintenance
change. The CRFs were registered in a revision control
system, which could then be used to generate statistics
about the number of faults traced back to each individual
class.
2.3.3 Data Collected
LALO consists of a total of 90 classes. Of these 90 classes,
seven were automatically generated by code generators.
The other 83 classes were developed from scratch or reused
with extensive modifications. For these 83 system classes,
the values for each of the design measures were collected.
At this stage, it is pertinent to consider the influence of the
library classes and the automatically generated classes (for
simplicity, we collectively refer to these classes as ‘library
classes’ thereafter). For coupling measures, a decision re-
garding whether or not to count coupling to library classes
will have an impact on the computed measures’ values. We
hypothesized that a class is more likely to be fault prone if
it is coupled to a system class than if it is coupled to a li-
brary class (although this may be dependent on the experi-
ence of the developer with the class library being used, or
the quality of the library documentation). Consequently, the
results for each coupling measure were calculated twice for
each system class: counting coupling to other system
classes only, and counting coupling to library classes only.

341

Analysis was then performed on both resulting data sets.
2.4 Comparison to students’ systems
The results of the current study will be compared to those
obtained in a previous study [3], where we used data col-
lected from a development project -performed at the Univer-
sity of Maryland (UMD) over a four-month period. Eight
different groups of developers, composed of undergraduate
and postgraduate students, were asked to develop an infor-
mation system each. The systems were implemented in
C++, and ranged in size from 4 to 15 KSLOC. The eight
systems contained a total of 113 non-library classes.
The independent variables were the same as described in
Section 2.2. The fault data used in that study stemmed from
a thorough acceptance test performed on each system by an
independent group composed of experienced software pro-
fessionals. See [3] for more details on the setting of that
study.
3 DATA ANALYSIS METHODOLOGY
In this section we describe the methodology used to analyze
the coupling and cohesion measurement data collected for
the 83 system classes. The analysis procedure comprises an
analysis of the descriptive statistics, principal component
analysis, univariate regression analysis against the fault
data, and correlation to size. We now describe these tech-
niques in some detail.
3.1 Descriptive statistics
The data set consists of 83 classes along with the relevant
values for each coupling and cohesion measure. The distri-
bution and variance of each measure is examined to select
those with enough variance for further analysis. Low vari-
ance measures do not differentiate classes very well and
therefore are not likely to be useful predictors in our data
set.
3.2 Principal component analysis
If a group of variables in a data set are strongly correlated,
these variables are likely to measure the same underlying
dimension (i.e., class property) of the object to be meas-
ured. Principal component analysis (PCA) is a standard
technique to identify the underlying, orthogonal dimensions
that explain relations between the variables in the data set.
Principal components (PCs) are linear combinations of the
standardized independent variables. The sum of the square
of the coefficients in each linear combination is equal to
one. PCs are calculated as follows. The fust PC is the linear
combination of all standardized variables which explain a
maximum amount of variance in the data set. The second
and subsequent PCs are linear combinations of all stan-
dardized variables, where each new PC is orthogonal to all
previously calculated PCs and captures a maximum vari-
ance under these conditions. Usually, only a subset of all
variables have large coefficients - also called the loading of
the variable - and therefore contribute significantly to the
variance of each PC. The variables with high loadings help
identify the dimension the PC is capturing but this usually
requires some degree of interpretation.
In order to identify these variables, and interpret the PCs,
we consider the rotated components. This is a technique
where the PCs are subjected to an orthogonal rotation. As a

result, the rotated components show a clearer pattern of
loadings, where the variables either have a very low or high
loading, thus showing either a negligible or a significant
impact on the PC. There exist several strategies to perform
such a rotation. We used the varimax rotation, which is the
most frequently used strategy in the literature. See [1 I] for
more details on PCA and rotated components.
3.3 Univariate regression analysis
Univariate regression analysis is performed for each indi-
vidual measure (independent variable) against the depend-
ent variable, i.e., no fault/fault detection, in order to deter-
mine if the measure is a useful predictor of fault-proneness.
The dependent variable we use to validate the design meas-
ures is binary, i.e., was a fault reported by a. user traced
back to a class during the maintenance phase? Therefore,
we use logistic regression, a standard technique based on
maximum likelihood estimation, for the regression analysis.
In the following, we give a short introduction to logistic
regression, full details can be found in [141 or [161.
The logistic regression model is based on the following
relationship equation:

n(X) =
&+cm

1 + e(%+m

7c is the probability that a fault was found in a class during
the validation phase, and X is the design measure. The
curve between 7c and X takes a flexible S shape which
ranges between two extreme cases:
l When X is not significant, then the curve approximates a

horizontal line, i.e., 71 does not depend on X.
l When X entirely differentiates fault-prone software

parts, then the curve approximates a step function.
The coefficients co and cl are estimated through the maxi-
mization of a likelihood function L, built in the usual fash-
ion, i.e., as the product of the probabilities of the single
observations, which are functions of the covariates (whose
values are known in the observations) and the coefficients
(which are the unknowns). For mathematical convenience,
l=ln[L], the loglikelihood, is usually the function to be
maximized. This procedure assumes that all observations
are statistically independent. In our context, an observation
is the (non) detection of a fault in a C++ class. Each (non)
detection of a fault is assumed to be an event independent
from other fault (non) detections. Each data vector in the
data set describes an observation and has the following
components: an event category (fault, no fault) ;and a set of
00 design measures (described in Section 2.2).
Aw, which is based on the notion of the odds ratio [14],
provides an evaluation of the impact of the mea.sure on the
dependent variable. More specifically, the odds ratio v(X)
represents the ratio between the probability of having a
fault and the probability of not having a fault when the
value of the measure is X. As an example, if, for a given
value X, v(X) is 2, then it is twice as likely that the class
does contain a fault than that it does not contain a fault. The
value of Aw is computed by means of the following for-
mula:

348

o is the standard deviation of the measure. Therefore, Av
represents the reduction/increase in the odds ratio when the
value X increases by one standard deviation. This is de-
signed to provide an intuitive insight into the impact of
independent variables. However, as we will see in Section
4, some measures display very extreme outliers which in-
flate the standard deviation of those measures. The Avs
then can no longer be reasonably interpreted. Therefore,
outliers were excluded for the calculation of the Atys.
3.4 Correlation to size
For each measure, we analyze its relationship to the size of
the class. This is to determine empirically whether the
measure, even though it is assumed to be a coupling or co-
hesion measure, is essentially measuring size. This is im-
portant for several reasons. First, if a measure is strongly
related to size, then it might shed light on its relationship
with fault-proneness: bigger classes are more likely to
contain faults. Recall that we are interested in increasing
our understanding of 00 code and design quality, inde-
pendently of its size. Second, a model that systematically
identifies bigger classes as more fault-prone is a priori less
useful: the predicted fault-prone classes are likely to cover
a larger part of the system, the model thus could not help to
focus inspection and testing efforts very well.
In this study, we measure the size of a class in terms of the
number of methods implemented in the class. We then cal-
culate Spearman’s Rho coefficient between each design
measure and size.
3.5 Comparison to previous study
One focus of this paper to compare the results obtained
from LALO to those obtained to from the systems analyzed
in [3] (referred to thereafter as the “UMD systems”). There-
fore, in the analyses below, we include a systematic com-
parison of the results with this previous study and try to
explain differences and common observation. Since the
systems studied are very different in nature, this should
allow us to identify what results are more likely to be gen-
eralizable.
4 ANALYSIS RESULTS
In this section, we discuss for the coupling and cohesion
measures separately, the descriptive statistics, principal
component analysis, univariate analysis, and correlation to
size, and compare the results to those obtained with the
UMD systems. In Section 4.3, we briefly summarize the
results from building and evaluating a multivariate predic-
tion model.
4.1 Coupling Results
Table 3 summarizes the descriptive statistics, univariate
analysis, and correlation to size for the coupling measures.
The left half of the table provides the data for the measures
counting coupling to non-library classes only, the right half
for the measures counting coupling to library classes only.
Columns “Max”, “Mean” and “o” state, for each measure,
the maximum value, mean value, and standard deviation.
From univariate analysis, the regression coefficient and
standard error is provided (Columns Joeff.“ and ,,S.E. “),

the Aw value as defined in Section 3.3, and the statistical
significance (p-value) of the regression coefficient. For
measures which also have a significant relationship to size
(at a=O.O5), Spearman’s Rho coefficient with size is given
in column “Rho”.
4.1. I Descriptive statistics

The measures that count coupling to friend classes (the
F***C and IF***C measures) are all zero. That is, there
are no friendship relationships in the system.
There is little inheritance coupling, as can be seen by the
low mean and standard deviation of the measures which
count this type of coupling: NIH-ICP, the A***C and
D***C measures. Measures ACAIC and DCAIC have
only one class with a non-zero value. There is no in-
heritance coupling to library classes. Therefore, ICP and
NIH-ICP yield identical values, as do MPC and
OMMIC.
Overall, there is only very little coupling to library
classes. 60% of the LALO classes only interact with
other LALO classes.
There is evidence of export coupling to library classes.
One of the automatically generated classes in the LALO
system uses some of the 83 non-library classes.

Comparison to UMD systems
For the UMD study, we investigated eight independent,
smaller systems, whereas in the current study, we have one
large system. Therefore, overall there is more coupling pre-
sent in the LALO system, especially the measures which
involve method invocations have higher means and stan-
dard deviations than in the UMD systems. However, there
are two exceptions to this:

There is less aggregation coupling in the LALO system
(in this paper by aggregation we mean instances where a
class has an attribute whose type is another class). In
particular, there is no aggregation coupling to library
classes, which is to be expected for the kinds of libraries
used (IO, threading).
Unlike in the UMD systems, there is no friendship cou-
pling in the LALO system. This was considered bad
practice and was avoided, e.g., by introducing access
methods to set and retrieve values of class attributes,
whenever this was required.

4.1.2 Principal Component Analysis
Since each coupling measure has been. measured twice
(once counting coupling to library classes only, once
counting coupling to non-library classes only), we consider
the two versions of each measure to be distinct measures.
To distinguish them, we denote the version counting cou-
pling to library classes by appending an ,,-L” to its name.
For example, MPC-L denotes the measure that counts in-
vocations of methods from library classes, whereas MPC
denotes the measure that counts invocations of method
from non-library classes.
For the PCA, measures that did not vary were discarded.
From pairs of measures with identical values, one redun-
dant measure was removed. PCA with the remaining meas-
ures identified seven PCs which capture 82% of the data set
variance.

349

Table 3: Analysts results for coupling measures

In the following, we provide for each PC the percentage of
the data set variance the PC describes, a list of the measures
with high loadings in the PC, and our interpretation of the
dimension that the PC captures.

PC 1 (27%): MPC, ICP, NlH-ICP, and OMMIC: measure
the extent of import coupling through method invoca-
tions to non-library classes.
PC2 (15%): OCAEC, ACMIC, OCMEC, and CBO-L.
When considering all variables, this PC is difficult to
interpret. However, the two variables with the highest
loadings, OCAEC and OCMEC, capture export coupling
to non-library classes. This will be our tentative inter-
pretation for this PC.

PC3 (12%): RFCi-L, MPC-L, ICPL, and OCMIC-L:
MPC-L and ICP-L count import coupling through
method invocations to library classes. RFCi-L captures
the number of methods invoked plus the local methods,
and is therefore expected here. OCMIC-L also counts
import coupling to library classes through CM interac-
tions, but its loading is comparatively low. We therefore

interpret this PC as capturing import coupling through
method invocations to library classes.
PC4 (11%): DAC, DAC’, OCAIC, OCMIC: The first
three measures are the strongest and count import cou-
pling through aggregation relationships to non-library
classes.
PC5 (8%): RFC,, RFC,, IH-ICP, AMMIC. Measures
IH-ICP and AMMIC count import coupling through
method invocations to non-library ancestor classes. The
correlation of these measures to the RFC measures was
also observed in the UMD systems. The explanation is
that classes which import from ancestors also inherit
methods from their ancestors. These inherited methods
are part of the “response set“ of the class (see the defmi-
tion of RFC in Table 1) and thus counted by the meas-
ures. Hence, the RFC measures tend to be larger for de-
scendent classes. Because the inheritance-based import
coupling measures are non-zero for descendent classes
only, they have a positive correlation to RFCi and RFC,.
PC6 (5%): This PC is determined by the measure
DCMEC only.

350

l PC7 (5%): CBO, CBO’, OMMEC, OCMEC-L. This
PCs cannot be reasonably interpreted. It is common in
principal component analysis that the weaker PCs ex-
plaining a small amount of variance are difficult to in-
terpret.

Comparison to UMD systems
There are a number of orthogonal coupling dimensions
common to both systems: the dimensions represented by
PC1 (method invocations to non-library classes), PC3
(method invocations to library classes), and PC4 (import
aggregation coupling) are also present in the UMD systems.
Some dimensions identified in the UMD systems could not
be observed here, because the corresponding measures had
little or no variation in the LALO system, e.g., import ag-
gregation coupling to library classes, import and export
coupling to friend classes.
4.1.3 Univariate logistic regression
As we can see in Table 3, most of the measures have a sig-
nificant relationship to fault-proneness (at a=0.05). The
exceptions are DCMEC and DMMEC of PC6, which count
export coupling to descendent classes.
For all significant measures, the regression coefficients are
positive. This is consistent with the common notion that
classes with higher import or export coupling are more
likely to be fault-prone.
The impact of export coupling on fault-proneness is weaker
than that of import coupling: the export coupling measures
mostly have lower coefficients and Avs than their import
coupling counterparts.
The CBO measures are the only measures which count both
import and export coupling. Their relationship to fault-
proneness is particularly strong (high coefficients and Aqfs).

Comparison to UA4D systems
Similar to the results obtained with the UMD systems, all
import coupling measures with sufficient variation were
found to be significant predictors of fault-proneness.
However, in the UMD systems, none of the export coupling
measures was found to be significantly related to fault-
proneness in the expected direction. In the LALO system,
most of the export coupling measures that do vary also are
indicators of fault-proneness. Maybe, because of the
weaker impact of export coupling, and because there was
overall less coupling in the UMD systems, thus resulting in
less statistical power, we failed to find a statistically sig-
nificant relationship to fault-proneness in those systems.
4.1.4 Correlation to size
The non-library versions of measures DAC, DAC’,
OCAIC, and OCMIC (all in PC4), and RFCi, have the
strongest relationship to size. For OCMIC this may be ex-
plained because the more methods a class has, the more
method parameters there are, the higher OCMIC is likely to
be (which counts the number of method parameters that
have an “other” class as their type). RFCi includes a count
of the number of methods; therefore a correlation to size is
expected here. However, the Rho coefficients for all these
measures are only barely above 0.5, i.e., the relationship to
size is not very strong. For all other coupling measures,

significant Rho coefficients are below 0.5, that is, there is at
most a moderate correlation to size for these measures, if
my.
Comparison to UMD systems
Common to the LALO and UMD systems is that overall a
correlation to size is present, but it is weak.
4.2 Cohesion Results
Table 4 presents the descriptive statistics, univariate analy-
sis, and correlation to size for all cohesion measures. The
meaning of the columns is the same as in Table 3.
4.2. I Descriptive statistics
ICH, LCOMl and LCOM2 have extreme outliers. For the
LCOM measures, this is due to the presence of access
methods. These methods usually only reference one attrib-
ute, and therefore increase the number of pairs of methods
in the class that do not use attributes in common.
Comparison to UMD systems
Overall, the distributions of the individual measures in
terms of their mean and standard deviations are very similar
to the UMD systems. This is to be expected, as the cohe-
sion measures are concerned with the internal structure of
each individual class. Unlike the coupling measures, they
are not strongly affected by the overall size of the systems.
It is interesting to see that both studies’ results show nor-
malized cohesion measures (i.e., Coh, Co, LCOMS, LCC,
TCC) with mean and median values far below 1. In light of
the relatively high experience of the LALO developers, the
question is now whether achieving values near 1 is a realis-
tic expectation for such measures and, consequently, how
should we interpret them?
4.2.2 Principal Component Analysis
PCA identified three PCs which describe 91% of the vari-
ance in the data set. Below, we provide for each PC the
percentage of the data set variance the PC describes, the list
of the measures with high loadings in the PC, and our in-
terpretation of the dimension that the PC captures:

PC1 (55%): LCOMS, Coh, Co, and TCC: These are
normalized cohesion measures which are based on at-
tribute usage by methods. Also common to these meas-
ures is that they do not take the transitive closure of the
attribute-usage relationship between methods into ac-
count.
PC2 (26%): LCOMI, LCOMZ, and ICH. This PC is
difficult to interpret. LCOMI and LCOM2 are non-
normalized measures based on common attribute usage
between methods. ICH is a count of method invocations
in a class. Since these measures are in the same PC indi-
cates that the more the methods of a class invoke each
other (high ICH), the less likely they are to use attributes
in common (high LCOMI and LCOMZ). An explanation
for this may be the presence of access methods in many
classes. If the methods of a class do not reference the at-
tributes of their class directly, but via access methods,
ICH is artificially increased (invocation of access meth-
ods), and both LCOMI and LCOM2 are also artificially
increased (fewer direct references to attributes).

351

) Measure] Descriptive Statistics 1 Univariate Analvsis I Size I
* Max Mean

591.3
Coef. S.E. Ay Rho

LCOMl 5437 139.6 0.02 0.006 O.Op004 3 94 0.81
LCOM2 4988 99.59 547.7 0.011 0.005 0.0249 1:61 0.31

Table 4: Analysis results for cohesion measures

l PC3 (10%): LCOM3, LCOM4, LCC, TCC. These meas-
ures operate on graphs whose vertices represent the
methods of a class, and edges between nodes represent
common-attribute usage relationships (the precise defi-
nitions of the graphs differ slightly between measures,
see their definitions in Table 2). This PC captures the
degree of connectivity in these graphs. LCOM3 and
LCOM4 count the connected components of their re-
spective graphs, LCC is a (normalized) count of the
edges of a graph that takes the transitive closure of
common attribute-usage relationships into account.
Whenever the graphs consist of few connected compo-
nents (low values of LCOM3 and LCOM4), the number
of edges of the transitive closure of the graph is large
(high values of LCC). This similarity was observed in
[6], based on a comparison of the definitions of the
measures, and is confirmed by empirical evidence in this
study. The above interpretation does not apply to TCC,
which is also present in this PC, but its loading is com-
paratively low here.

Among the cohesion measures considered here are variants
of the same concept. These variants were mostly defined
with the intention to improve existing measures by elimi-
nating problems that were identified based on theoretical
considerations (see [6] for a summary of these discussions).
From a practical perspective, these differences in the defi-
nitions do not seem to matter much, because the related
measures lie within the same PCs: LCOMS and Coh in
PCl, LCOMl and LCOM2 in PC2, LCOM3 and LCOM4
in PC3, TCC and LCC in PC3, even though TCC tends
more towards PC 1.

There appears to be a separation between normalized and
non-normalized measures. PC 1 consists of normalized
measures only, PC2 only of non-normalized measures.
PC3, however, contains a mix of one normalized and non-
normalized measures, for reasons explained above.

Comparison to UA4D systems
The separation between normalized and non-normalized
measures observed in the LALO system was even stronger
visible in the UMD systems.

The fact that measures which are variants of the same con-
cept show up in the same PC was also observed in the
UMD systems. From a practical perspective, it means that
although those variant measures were deemed important

from a conceptual perspective, they do not seem to make a
tangible d&ence.
Notable differences between the systems: LCOM 1,2,3 and
4 all were in one PC in the UMD systems, and ICH defined
a dimension of its own. The reason is that, as explained
above, these measures are affected by access methods. It is
important to note that access methods are present in the
LALO system, but not in the UMD systems.

4.2.3 Univariate logistic regression
Five of the ten cohesion measures are significant at cx=O.O5:

The significant measures LCOMl, LCOM2, and
LCOM3 show positive correlation coefficients. This in-
dicates that the higher the values of these measures, the
more fault-prone the class is likely to be. This is consis-
tent with the common belief that low cohesion is bad de-
sign.

As was discussed in [3], the mathematical properties of
ICH make it unlikely to be measuring cohesion. ICH
possesses properties of a complexity measure. With this
information, the positive coefficient of ICH is reason-
able: the higher ICH (and thus class complexity), the
more fault-prone the class.
For LCC, the positive coefficient indicates that fault-
proneness increases with class cohesion, which is coun-
ter-intuitive. As we will see below, LCC is also posi-
tively correlated to size, which may explain this unex-
pected relationship to fault-proneness.

All other measures (LCOM4, LCOMS, Coh, Co, TCC) are
not significant predictors.

All measures of PC2 are significant: LCOMl, LCOM2, and
ICH. Two of these measures, LCOMl and ICH are corre-
lated to size. None of the measures in PC1 is significant.
This PC contains normalized measures, which we consider
a necessary property of a cohesion measure [7], but which
appears not to be effective. In PC3 (connectivity), only
LCOM3 is significant at a=0.05 (in the expected direction).

We would expect that variants of the same measure that lie
in the same PC also have similar results for univariate
analysis. This is confirmed by LCOMS and Coh of PCl,
which both are not significant, and LCOMl and LCOM2
in PC2, both significant with similar coefficients and p-
values. For LCOM3 and LCOM4 in PC3, however, despite

352

the similar distributions and strong correlation between the
measures (Spearman’s Rho O-93), the difference of the p-
values is substantial. LCOM3 is significant at a=0.05,
LCOM4 is not significant at all. Note that an outlier of
LCOM3 (the maximum value of 56) is not influential and
has no impact on the significance of LCOM3. Likewise,
LCC is significant, but not TCC, despite their strong corre-
lation (Spearman’s Rho 0.90).

Comparison to UMD systems
From the cohesion measures found significant in the LALO
system, LCOM3 and ICH were also significant in the UMD
systems. Coh was significant in the UMD systems, but not
in the LALO system. All other measures, including
LCOMl, LCOM2, and LCC, were not significant in the
UMD systems.

4.2.4 Correlation to size
LCOMl is very strongly correlated to size, which may ex-
plain its significant relationship to fault-proneness. The
correlation to size is due to the presence of access methods
in some classes, which artificially increases the number of
pairs of methods that do not use attributes in common.

We saw that the presence of access methods has strong
impact on some of the measures in PCA, univariate analy-
sis and correlation to size. Several authors suggested modi-
fications to the definition of these measures to better ac-
count for the presence of access methods (see [6] for a
summary of these discussions). However, for a completely
automated static analysis of the systems, there must be a
way to automatically recognize access methods (e.g., a con-
sistently applied naming scheme that uniquely identifies
access methods by “set-” and “get-” name prefixes, which
must not be used for any other methods). If there is no way
to safely identify access methods, as this is the case in
LALO, these modified measures are difficult to implement
and use in practice.

ICH and LCC have a moderate positive correlation to size.
For ICH, which is a count of method invocations within
classes, this is understandable: the more methods a class
has, the more method invocations are likely to occur within
the class (even though this could not be observed in the
UMD systems). For LCC, however, we have no explana-
tion for the correlation to size. Most of the other measures
have a significant, but weak correlation to size.

Comparison to UMD systems
In the UMD systems, we also found that many measures
had a significant, but weak correlation to size. In particular,
ICH displayed one of the strongest correlations among all
cohesion measures in both the UMD and LALO systems.
Such a relationship is explained, as discussed above, by the
way the measure is defmed. Such correlations just confirm
the argument that ICH cannot probably be considered as a
cohesion measure.
413 Building Predictive Models
In this paper, we have focused on empirically investigating
the bivariate relationships between 00 coupling and cohe-
sion measures and fault-proneness. Our goals were to better
understand the dimensions captured by existing measures
and quantitatively investigate their impact on one important
aspect of quality. However, in addition to the results pre-

sented above, it is interesting to note that by combining
coupling and cohesion measures into multivariate predic-
tion models, it is possible to obtain very accurate prediction
models of fault-prone classes based on design information.
Such models can then be used to focus inspection or testing
activities on specific parts of the system [3]. Because of
space constraints, we cannot report here the full details of
our multivariate analysis results [4]. However, we think it is
important to summarize those results in order to illustrate
the level of predictive accuracy that can be obtained
through design measurement.

We built a prediction model using multivariate logistic re-
gression and a forward selection procedure. The significant
coupling and cohesion measures, plus a number of inheri-
tance measures that we additionally investigated in [4] were
allowed to enter the model. The resulting model consisted
of six measures: five coupling measures (CBO’, ICP-L,
NIH-ICP, OCAIC, OCMIC), and one ‘cohesion’ measure
(ICH, which, as discussed, is unlikely to measure cohe-
sion).

To evaluate the prediction model, we performed a IO-cross
validation. To this end, the 83 data points were randomly
split into ten partitions of roughly equal size. For each par-
tition, we re-fitted the model with the six covariates listed
above, using only data points not included in the partition,
and then applied the model to those data points in the parti-
tion. Classes with a predicted probability 7c>O.5 were classi-
fied fault-prone. The threshold 0.5 was good enough to
balance the number of actually faulty and predicted fault-
prone classes. We then compared, across all ten partitions,
the predicted and actual fault-proneness of the classes. The
results of this comparison are summarized in Table 5.

Predicted c
rcco.5 00.5

INo fault 3 1 16 37

Actual
Fault

6 (7 faults) ::24 faults) 41”3 1 faults)
c 37 - I I

46
I
83

I

Table 5: Prediction model evaluation
From Table 5 we see that 46 classes were predicted fault-
prone. 40 of these 46 classes actually contain a fault (87%
correctness). The classes predicted fault-prone contain 45
classes contained 124 out of all 13 1 faults in the system
(95% completeness).

The 46 classes predicted fault-prone contain 66% of the
methods. The 46 actually fault-prone classes contain 65%
of all methods. That is, the portion of the system that is
predicted fault-prone is close to the theoretical minimum,
the portion of the system that is actually fault-prone.

Comparison to UMD systems
In terms of its predictive power, the multivariate model
derived from the UMD data set performs almost as well as
the LALO (-90% completeness, -80% correctness). The
model itself differs from the LALO model: it contains a
larger number of variables (due to the larger data set), and a
different selection of variables. However, the dimensions
that were found to have a strong relationship to fault-
proneness in both systems (e.g., import coupling through

353

method invocations to library/non-library classes) are also
represented in both models; see [4] for a more detailed
comparison of the models.

5 CONCLUSIONS
Based on the comparison of the results from the two studies
performed so far, we provide a number of recommenda-
tions. If one intends to build quality models of 00 designs,
coupling will very likely be an important structural dimen-
sion to consider. More specifically, a strong emphasis
should be put on method invocation, import coupling since
it has shown to be a strong, stable indicator of fault prone-
ness. We also recommend that the following aspects be
measured separately since they capture distinct dimensions
in our data sets: import versus export coupling, coupling to
library classes versus application classes, method invoca-
tion versus aggregation coupling. As far as cohesion is con-
cerned and measured today, it is very likely not to be a very
good fault-proneness indicator. This stems mainly from the
current difficulty to define clearly the concept and measure
it. One illustration of this problem is that two distinct di-
mensions are captured by existing cohesion measures: nor-
malized versus non-normalized cohesion measures. As op-
posed to the various coupling dimensions, these do not look
like components of a vector characterizing class cohesion,
but rather as two, fundamentally different ways of looking
at cohesion. Which one is actually measuring the concept
of cohesion, if any?

When using design measures to build predictive models of
fault-prone classes, we have consistently obtained, across
two studies, high levels of classification accuracy (i.e.,
around 90% correctness and completeness). This suggests
that design measurement-based models may be very effec-
tive instruments for quality evaluation and control. How-
ever, the overall results of our studies also tell us that the
validity of fault-proneness models may be very context-
sensitive. In a given environment, their stability has to be
assessed and analyzed across systems so that conditions
(e.g., application domain) under which models are stable
can be identified. Although some of the patterns and rela-
tionships presented above seem stable across very different
study settings and systems, replication of such studies is
necessary in order to build over time a credible body of
empirical knowledge on which to base the quality assess-
ment of 00 designs and systems.

ACKNOWLEDGMENTS
We would like to thank Michael Ochs for developing the
analyzers used in this study, Michel Lavallee for making
the LALO study possible, and the LALO developers with-
out whom such quality data could not have been collected.
The Concerto2/AUDIT tools and the FAST technology are
marketed by SEMA Group, France. We also want to thank
SEMA group for providing us with this tool suite.

REFERENCES
All ISERN technical reports below are available from
http://www.iese.kg.de/ISERN/pub/isem-biblio_tech.h~l.

[1] V.R. Basili, L.C. Briand, W.L. Melo, “A Validation of
Object-Oriented Design Metrics as Quality Indica-
tors”, IEEE Transactions on Software Engineering, 22
(IO), 751-761, 1996.

PI

[31

[41

PI

[61

[71

PI

[91

L; Briand, P. Devanbu. W. Melo. “An Investigation
into Coupling Measures for C+;“, Proceedinis of
ICSE ‘97, Boston, USA, 1997.
L. Briand, J. Daly, V. Porter, J. Wtist, “A Comprehen-
sive Empirical Validation of Product Measures for
Object-Oriented Systems”, Technical Report ISERN-
98-07, 1998.
L. Briand, S. Ikonomovski, H. Lounis, .J. Wtist, “A
Comprehensive Investigation of Quality Factors in
Object-Oriented Designs: an Industrial Case Study”,
Technical Report ISERN-98-29, 1998.
L. Briand, J. Daly, J. Wtist, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems”,
IEEE Transactions on Software Engineering: to be
published, 1998. Also Technical Report ISERN-96-14.
L. Briand, J. Daly, J. Wtist, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems”,
Empirical Software Engineering Journal, 3 (1), 65-
1 17, 1998. Also Technical Report ISERN-97-05 .
L. Briand, S. Morasca, V. Basili, “Property-Based
Software Engineering Measurement”, IEEE Transac-
tions of Software Engineering, 22 (1), 68-86, 1996.
J.M. Bieman, B.-K. Kang, “Cohesion and Reuse in an
Object-Oriented System”, in Proc. ACM Symp. Soft-
ware Reusability (SSR’94), 259-262, 1995.
S.R. Chidamber, CF. Kemerer, “Towards a Metrics
Suite for Object Oriented design”, in A. Paepcke, (ed.)
Proc. Conference on Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA’91),
October 1991. Published in SIGPLAN Notices, 26
(1 l), 197-211, 1991.

[IO] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Soft-
ware Engineering, 20 (6), 476-493, 1994.

[1 I] G. Dunteman, “Principal Component Analysis”,
SAGE Publications, 1989.

[121 “FAST Programmer’s Manual”, SEMA Group,
France, 1997:

[161

v71

PSI

B. Henderson-Sellers, “Software Metrics”, Prentice
Hall, Hemel Hempstaed, U.K., 1996.
D.W. Hosmer, S. Lemeshow, “Applied L,ogistic Re-
gression”, John Wiley & Sons, 1989.
M. Hitz, B. Montazeri, “Measuring Coupling and Co-
hesion in Object-Oriented Systems”, in Proc. Int.
Symposium on Applied Corporate Computing, Mon-
terrey, Mexico, October 1995.
T. Khoshgoftaar, E. Allen, “Logistic Regression Mod-
eling of Software Quality”, TR-CSE-97-24, Florida
Atlantic University, March 1997.
W. Li, S. Henry, “Object-Oriented Metrics that Predict
Maintainability”, J. Systems and Software, 23 (2),
11 l-122, 1993.
Y.-S. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang, “Meas-
uring the Coupling and Cohesion of an Object-
Oriented Program Based on Information Flow”, in
Proc. International Conference on Softwa.re Quality,
Maribor, Slovenia, 1995.

354

