Fault Tolerant Computing

CS 530

Test Coverage & Defects

Yashwant K. Malaiya

Colorado State University
Test Coverage Measures

- Statement or Block coverage
- Branch or decision coverage
- P-use coverage: p-use pair: variable defined/modified - use as predicate
- C-use coverage: similar -use for computation
- Subsumption hierarchy:
 - Covering all branches cover all statements
 - Covering all p-uses cover all branches
Modeling: Defects, Time, & Coverage

Malaiya, Li, Bieman, Karcich, Skibbe, 1994
Li, Malaiya, Denton, 1998
Coverage Based Defect Estimation

- Coverage is an objective measure of testing
 - Directly related to test effectiveness
 - Independent of processor speed and testing efficiency
- Lower defect density requires higher coverage to find more faults
- Once we start finding faults, expect coverage vs. defect growth to be linear
Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows logarithmic model

\[C^0(t) = \frac{\beta^0_0}{N^0} \ln(1 + \beta^0_1 t), \quad C^0(t) \leq 1 \]

• Hypothesis 2: test coverage growth follows logarithmic model

\[C^i(t) = \frac{\beta^i_0}{N^i} \ln(1 + \beta^i_1 t), \quad C^i(t) \leq 1 \]
Log-Expo Coverage Model (2)

- Eliminating t and rearranging,
 \[C^0 = a_0^i \ln[1 + a_1^i(\exp(a_2^iC^i) - 1)], \quad C^0 \leq 1 \]
 where C^0 : defect coverage, C^i : test coverage
 a_0^i, a_1^i, a_2^i : parameters; i : branch cov, p - use cov etc.

- For “large” C_i, we can approximate
 \[C^0 = -A^i + B^iC^i \]
Coverage Model, Estimated Defects

\[C^0 = -A^i + B^i C^i, \quad C^i > C_{knee} \]

- Only applicable after the knee
- Assumptions: Stable Software
Location of the knee

\[C_{knee} = 1 - \left(\frac{E_{\min}}{D_{\min} E_0} \right) D_0 \]

- Based on interpretation through logarithmic model
- Location of knee based on initial defect density
- Lower defect densities cause knee to occur at higher coverage
- Parameter estimation: Malaiya and Denton (HASE ‘98)
Data Sets Used
Vouk and Pasquini

• Vouk data
 ▪ from N version programming project to create a flight controller
 ▪ Three data sets, 6 to 9 errors each

• Pasquini data
 ▪ Data from European Space Agency
 ▪ C Program with 100,000 source lines
 ▪ 29 of 33 known faults uncovered
Defects vs. Branch Coverage

Data Set: Pasquini

Defects Expected

Fitted Model
Defects vs. P-Use Coverage

Data Set: Pasquini

- Defects Expected
- Fitted Model

Defects vs. P-Use Coverage

- Model
- Data
Estimation of Defect Density

• Estimated defects at 95% coverage, for Pasquini data (assume 5% *dead code*)

• 28 faults found, and 33 known to exist

<table>
<thead>
<tr>
<th>Measure</th>
<th>Coverage Achieved</th>
<th>Expected Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>82%</td>
<td>36</td>
</tr>
<tr>
<td>Branch</td>
<td>70%</td>
<td>44</td>
</tr>
<tr>
<td>P-uses</td>
<td>67%</td>
<td>48</td>
</tr>
</tbody>
</table>
Defects vs. P-Use Coverage

Data Set: Vouk 3
Coverage Based Estimation

Data Set: Pasquini et al

Estimates are stable
Current Methods

• Development process based models allow for \textit{a priori} estimates
 ▪ Not as accurate as methods based on test data

• Sampling methods often assume faults found as easy to find as faults not found
 ▪ Underestimates faults

• Exponential model
 ▪ Assume applicability of exponential model
 ▪ We present results of a comparison
The Exponential Model

Data Set: Pasquini et al

Estimate rises as new defects found

Estimates very close to actual faults

Test Cases

Defects

Defects Found

Estimate
Related articles

• Frankl & Iakouneno, Proc. SIGSOFT ‘98
 ▪ 8 versions of European Space Agency program, 10K LOC, Single fault reinsertion

• Tom Williams, manuscript 1999
 ▪ analysis from first principles

• Peter G Bishop, SAFECOMP 2002
 ▪ A related model, unreachable code
Observations and Conclusions

• Estimates with new method are very stable
 ▪ Visual confirmation of earlier projections

• Which coverage measure to use?
 ▪ Stricter measure will yield closer estimate

• Some code may be dead or unreachable
 ▪ Found with compile or link time tools
 ▪ May need to be taken into account