Optimal Reliability Allocation

Yashwant K. Malaiya
malaiya@cs.colostate.edu

Department of Computer Science
Colorado State University
Reliability Allocation Problem

- Allocation the reliability values to subsystems
 - to minimize the total cost
 - while achieving the reliability target.

- Widely applicable
 - Software systems
 - Electrical systems
 - Mechanical systems

- Implementation choices
 - Discrete
 - Continuous
Reliability Allocation in Software

- A software system consists of many functional modules
 - Some reused, probably with lower defect densities
 - Some are new, with higher defect densities
 - Some are invoked more often

- To increase reliability
 - Additional testing
 - Replicated using n-version programming?

- What is the best strategy?
Optimal Reliability Allocation

- **System composed of subsystems:**
 - Subsystem cost a function of reliability
 - System reliability depends on subsystems
 - Failure rate as a reliability measure

- **Commons systems:** series and parallel

- **Software system reliability**
 - Fractional execution time
 - Lagrange multiplier: closed form optimal solution
 - Parameter dependence: size, defect density

- **Apportionment & general approach**
Problem Formulation

- System S has subsystems \(S_{si}, i = 1, \ldots, n \).
- Each subsystem \(SS_i \) has a specific functionality.
- Several choices with same functionality, but differently reliability levels.

\[
C_i = f_i(R_i)
\]

- Minimize system cost

\[
C_s = \sum_{i=1}^{n} C_i = \sum_{i=1}^{n} f_i(R_i)
\]

- Subject to target system reliability \(R_{ST} \)

\[
\leq \text{achieved reliability } R_s
\]
Cost minimization problem

Minimize \(C_s = \sum_{i=1}^{n} C_i = \sum_{i=1}^{n} f_i(R_i) \)

Subject to \(R_{ST} \leq R_s \)

For a series system \(R_S = \prod_{i=1}^{n} R_i \)

thus \(R_{ST} \leq \prod_{i=1}^{n} R_i \)
Subsystem implementation choices

- Subsystem can be made more reliable by extending a continuous attribute
 - diameter of a column in building
 - time spent for software testing.
- Different vendors implementations of SSi at different costs.
- Multiple copies of SSi to achieve higher reliability.
 - double wheels of a truck
- Number of copies is constrained between one and a practical number because of implementation issues.
The Cost function

Cost function f_i should satisfy these three conditions:

- f_i is a positive function
- f_i is non-decreasing, thus higher reliability will come at a higher cost.
- f_i increases at a higher rate for higher values of R_i

Mettas A, Reliability allocation and optimization for complex systems. Pro Ann Reliability and Maintainability Symp, January 2000, 216-221
In terms of failure rate

- Taking log of both sides, and since \(R_i(t) = e^{-\lambda_i t} \)

\[
\ln(R_{ST}) \leq \sum_{i=1}^{n} \ln(R_i) \quad \lambda_{ST} \geq \sum_{i=1}^{n} \lambda_i
\]

- Stating cost as a function of failure rate

\[
C_S = \sum_{i=1}^{n} C_i = \sum_{i=1}^{n} f_i(\lambda_i)
\]
In terms of failure rate: SRGM

- exponential software reliability growth model

\[\lambda_i (d) = \lambda_{0i} \exp(-\beta_i d) \]

- \(\lambda_{0i} \) depends on initial defect density
- \(\beta_i \) depends inversely on program size

- Restating it as Cost function

\[d(\lambda_i) = \frac{1}{\beta_i} \ln \left(\frac{\lambda_{0i}}{\lambda_i} \right) \]

Assumes constant development cost, thus neglected.
Series and Parallel Systems: linearlization

- Constraint Linearization simplifies the calculations.
- Series system
 \[\ln(R_{ST}) \leq \sum_{i=1}^{n} \ln(R_i) \]
- Parallel system: log of unreliaibilites

\[R_{ST} \leq 1 - \prod_{i=1}^{n} (1 - R_i) \quad \ln(1 - R_{ST}) \geq \sum_{i=1}^{n} (\ln(1 - R_i)) \]

- Elegbede: If cost function satisfies 3 properties given above, the cost is optimal if all parallel components have the same cost.
Reliability Allocation for Software Systems

- a block i is under execution for a fraction x_i of the time where $\sum x_i = 1$
- Reliability allocation problem

\[
\text{Minimize} \quad C = \sum_{i=1}^{n} \frac{1}{\beta_i} \ln \left(\frac{\lambda_{0i}}{\lambda_i} \right)
\]

subject to $\lambda_{ST} \geq \sum_{i=1}^{n} x_i \lambda_i$
Solution using Lagrange multiplier

- solutions for the optimal failure rates

\[
\begin{align*}
\lambda_1 &= \frac{\lambda_{ST}}{x_1} - \frac{\beta_1 x_1}{\sum_{i=1}^{n} \beta_i} \lambda_1 \\
\lambda_2 &= \frac{\beta_1 x_1}{\beta_2 x_2} \lambda_1 \\
&\vdots \\
\lambda_n &= \frac{\beta_1 x_1}{\beta_n x_n} \lambda_1
\end{align*}
\]

- optimal values of test times \(d_1\) and \(d_i, i\neq 1\)

\[
\begin{align*}
d_1 &= \frac{1}{\beta_1} \ln \left(\frac{\lambda_{10} x_1 \sum_{i=1}^{n} \frac{\beta_i}{\beta_i}}{\lambda_{ST}} \right) \\
d_i &= \frac{1}{\beta_i} \ln \left(\frac{\lambda_{i0} \beta_i x_i}{\lambda_1 \beta_1 x_1} \right)
\end{align*}
\]
Observations: Software reliability allocation

- A reused subsystem have a higher reliability because of past testing causing $\lambda_i \geq \lambda_{i0}$ and hence negative d_i.
 - Solution: apply allocation problem only to modules with positive d_i.

- If x_i is proportional to the subsystem code size, then optimal values of the post-test failure rates $\lambda_1, \ldots, \lambda_n$ are equal.
Ex: Optimal: Software with 5 blocks

<table>
<thead>
<tr>
<th>Block</th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>B₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size KSLOC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Ini Defect density</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>βᵢ</td>
<td>4.59×10⁻³</td>
<td>2.30×10⁻³</td>
<td>1.53×10⁻³</td>
<td>4.59×10⁻⁴</td>
<td>2.30×10⁻⁴</td>
</tr>
<tr>
<td>λᵢ₀</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.069</td>
<td>0.092</td>
</tr>
<tr>
<td>xᵢ</td>
<td>0.028</td>
<td>0.056</td>
<td>0.083</td>
<td>0.278</td>
<td>0.556</td>
</tr>
<tr>
<td>Optimal λᵢ</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Optimal dᵢ</td>
<td>30.1</td>
<td>60.1</td>
<td>90.2</td>
<td>1184</td>
<td>3620</td>
</tr>
</tbody>
</table>

Optimal when all modules have the same failure rate!
Ex: Equal testing

<table>
<thead>
<tr>
<th>Block</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size KSLOC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Ini Defect density</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>β_i</td>
<td>4.59×10^{-3}</td>
<td>2.30×10^{-3}</td>
<td>1.53×10^{-3}</td>
<td>4.59×10^{-4}</td>
<td>2.30×10^{-4}</td>
</tr>
<tr>
<td>λ_{i0}</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.069</td>
<td>0.092</td>
</tr>
<tr>
<td>x_i</td>
<td>0.028</td>
<td>0.056</td>
<td>0.083</td>
<td>0.278</td>
<td>0.556</td>
</tr>
<tr>
<td>λ_i</td>
<td>0.146</td>
<td>0.003</td>
<td>0.01</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>Equal d_i</td>
<td>1109.4</td>
<td>1109.4</td>
<td>1109.4</td>
<td>1109.4</td>
<td>1109.4</td>
</tr>
</tbody>
</table>

If Total test time is equally distributed for all 5 blocks, system will have significantly higher failure rate of **0.055** per unit time
Ex: Testing only B5

If Total test time is allowed only for block B5, system will have higher failure rate of 0.043 per unit time.

<table>
<thead>
<tr>
<th>Block</th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>B₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size KSLOC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Ini Defect density</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>β_i</td>
<td>4.59×10^{-3}</td>
<td>2.30×10^{-3}</td>
<td>1.53×10^{-3}</td>
<td>4.59×10^{-4}</td>
<td>2.30×10^{-4}</td>
</tr>
<tr>
<td>λ_{i0}</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td>0.069</td>
<td>0.092</td>
</tr>
<tr>
<td>x_i</td>
<td>0.028</td>
<td>0.056</td>
<td>0.083</td>
<td>0.278</td>
<td>0.556</td>
</tr>
<tr>
<td>λ_i</td>
<td>0.146</td>
<td>0.003</td>
<td>0.01</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>Equal d_i</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5547</td>
</tr>
</tbody>
</table>

$\lambda_{ST} \leq 0.04$
Common Apportionment rules

- **Equal reliability apportionment:**
 - At end they all individually have failure rate equal to target failure rate for the system

- **Complexity based apportionment**
 - Test time apportioned in proportion to the software size

- **Impact based apportionment:**
 - A component executed more frequently, or more critical, should be assigned more resources
Reliability Allocation for Complex Systems

An iterative approach

- Design the system using functional subsystems.
- Perform an initial apportionment of cost or reliability attributes based on suitable apportionment rules or preliminary computation.
- Predict system reliability.
- Is reallocation feasible and will enhance the objective function. If so, perform reallocation.
- Repeat until optimality is achieved.
- Does this meets objectives? If not, return to step 1 and revising the design at a higher level.
Conclusions

- **Reliability allocation**: consider how cost varies with reliability.

- **Software testing**:
 - \(\text{cost} \propto \log(1/\text{failure rate}) \)
 - \(\beta_1 \propto \text{size} \)

- **Reliability allocation** in systems with replicated subsystems can encounter correlated failures and thus would need a more careful modeling.