Probabilistic Methods

• Much of this may be a review of probability and statistics you have taken elsewhere.
• We cannot predict exactly when something will fail, but we can calculate the probability of a failure, and what can be done to reduce that.
• This is similar to what insurance industry does: they may not know when a person will die, but they can compute life-expectancy of someone who is say, 45 years old, and maintains an ideal weight.
Probabilistic Methods: Overview

• We can have concrete numbers even in presence of uncertainty.

Topics:
• Probability
 ▪ Disjoint events
 ▪ Statistical dependence
• Random variables and distributions
 ▪ Discrete distributions: Binomial, Poisson
 ▪ Continuous distributions: Gaussian, Exponential
• Stochastic processes
 ▪ Markov process
 ▪ Poisson process
Basics

• **Probability** of an event A

\[P\{A\} = \frac{n}{N} \]

if A occurs n times among N equally likely outcomes.

• Probability is a number between 0 and 1.

• Ex: Roll of a die

\[P\{\text{odd}\} = \frac{3}{6} = 0.5 \]

• If more information is available, probability of the same event changes. If we know die is *loaded*, perhaps

\[P\{\text{odd}\} = 0.6 \] is possible.
Basics Concepts

- **Prob. Of union of two events:**

 \[P\{A \cup B\} = P\{A\} + P\{B\} - P\{A \cap B\} \]

- **Ex: Roll of a die**

 \[
P\{outcome \text{ even } \cup \text{ outcome } \leq 3\} = P\{\text{even}\} + P\{\leq 3\} - P\{\text{even} \cap \leq 3\}
 \]

 \[
 = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}
 \]

- **If A and B are disjoint, i.e. if \(A \cap B = \phi \) (i.e. empty set),**

 \[P\{A \cup B\} = P\{A\} + P\{B\} \]

 \[P\{\bar{A}\} = 1 - P\{A\} \]
Conditional Probability

- **Conditional probability**

\[P\{A \mid B\} = \frac{P\{A \cap B\}}{P\{B\}} \text{ for } P\{B\} > 0 \]

- If A and B are **independent**, \(P\{A \mid B\} = P\{A\} \). Then

\[P\{A \cap B\} = P\{A\}P\{B\} \]

- **Example**: A toss of a coin is independent of the outcome of the previous toss.

\(P\{A \mid B\} \) is the probability of A, given we know B has happened.
Conditional Probability

• If A can be divided into disjoint A_i, $i=1,..,n$, then

$$P\{B\} = \sum_i P\{B \mid A_i\} P\{A_i\}.$$

• **Example:** A chip is made by two factories A and B. One percent of chips from A and 0.5% from B are found defective. A produces 90% of the chips. What is the probability a randomly encountered chip will be defective?

• $P\{\text{a chip is defective}\} = (1/100)x0.9 + (0.5/100)x0.1$

 $=0.0095$ i.e. 0.95%
Bayes’ Rule

• **Conditional probability**

\[P\{A \mid B\} = \frac{P\{A \cap B\}}{P\{B\}} \text{ for } P\{B\} > 0 \]

• **Bayes’ Rule**

\[P\{A \mid B\} = \frac{P\{B \mid A\}P\{A\}}{P\{B\}} \text{ for } P\{B\} > 0 \]

• **Example**: A drug test produces 99% true positive and 99% true negative results. 0.5% are drug users. If a person tests positive, what is the probability he is a drug user?

\[P\{DU \mid P\} = \frac{P\{P \mid DU\}P\{DU\}}{P\{P \mid DU\}P\{DU\} + P\{P \mid nDU\}P\{nDU\}} = 33.3\% \]
Random Variables

- A random variable (r.v.) may take a specific random value at a time. For example
 - X is a random variable that is the height of a randomly chosen student
 - x is one specific value (say 5'9'')
- A random variable is defined by its density function.
- A r.v. can be continuous or discrete

<table>
<thead>
<tr>
<th></th>
<th>continuous</th>
<th>discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density function</td>
<td>$f(x)dx$</td>
<td>$P{x \leq X \leq x + dx}$</td>
</tr>
<tr>
<td>“Cumulative distribution function” (cdf)</td>
<td>$F(x)$</td>
<td>$\int_{x_{\min}}^{x} f(x)dx$</td>
</tr>
<tr>
<td>Expected value (mean)</td>
<td>$E(X)$</td>
<td>$\int_{x_{\min}}^{x_{\max}} x f(x)dx$</td>
</tr>
</tbody>
</table>
Distributions, Binomial Dist.

- Note that
 \[\int_{x_{\text{min}}}^{x_{\text{max}}} f(x) \, dx = 1 \quad \sum_{i_{\text{min}}}^{i_{\text{max}}} p(x_i) = 1 \]

- Major distributions:
 - Discrete: Binomial, Poisson
 - Continuous: Gaussian, exponential

- Binomial distribution: outcome is either success or failure
 - Prob. of \(r \) successes in \(n \) trials, prob. of one success being \(p \)
 \[
 f(r) = \binom{n}{r} p^r (1 - p)^{n-r} \quad \text{for} \quad r = 0, \ldots, n
 \]
 Incidentally
 \[
 \binom{n}{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}
 \]
Distributions: Poisson

- **Poisson**: also a discrete distribution, λ is a parameter.

\[
f(x) = \frac{\lambda^x e^{-\lambda}}{x!}
\]

- **Example**: $\mu = \text{occurrence rate of something}$.
 - Probability of r occurrences in time t is given by

\[
f(r) = \frac{(\mu t)^r e^{-\mu t}}{r!}
\]

Often applied to fault arrivals in a system
Distributions: Gaussian1809 AD

- Continuous. Also termed \textbf{Normal} (called Laplacian in France!1774 AD)

\[f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \]

\[-\infty \leq x \leq +\infty\]

σ: standard deviation which is $\sqrt{\text{variance}}$

μ: mean

Laplace discovered it before Gauss in 1774 AD!
Normal distribution (2)

- Tables for normal distribution are available, often in terms of standardized variable $z = (x - \mu)/\sigma$.
- $(\mu - \sigma, \mu + \sigma)$ includes 68.3% of the area under the curve.
- $(\mu - 3\sigma, \mu + 3\sigma)$ includes 99.7% of the area under the curve.
- **Central Limit Theorem**: Sum of a large number of independent random variables tends to have a normal distribution.

The reason why normal distribution is applicable in many cases
Exponential & Weibull Dist.

Exponential Distribution: is a continuous distribution.
- Density function
 \[f(t) = \lambda e^{-\lambda t} \quad 0 < t \leq \infty \]

Example:
- \(\lambda \): exit or failure rate.
- \(\Pr\{\text{exit the good state during } (t, t + dt)\} \)
 \[= e^{-\lambda t} \lambda \, dt \]
- The time \(T \) spent in good state has an exponential distribution
- **Weibull Distribution**: is a 2-parameter generalization of exponential distribution. Used when better fit is needed, but is more complex.
Variance & Covariance

- **Variance**: a measure of spread
 - $\text{Var}\{X\} = E[(X-\mu_x)^2]$
 - Standard deviation = $(\text{Var}\{X\})^{1/2}$
 - $\sigma = \text{standard deviation (usually for normal dist)}$

- **Covariance**: a measure of statistical dependence
 - $\text{Cov}\{X,Y\} = E[(X-\mu_x)(Y-\mu_y)]$
 - Correlation coefficient: normalized
 - $\rho_{xy} = \frac{\text{Cov}\{X,Y\}}{\sigma_x \sigma_y}$
 - Note that $0<|\rho_{xy}|<1$
Stochastic Processes

- **Stochastic process**: that takes random values at different times.
 - Can be continuous time or discrete time
- **Markov process**: discrete-state, continuous time process. Transition probability from state i to state j depends only on state i (It is memory-less)
- **Markov chain**: discrete-state, discrete time process.
- **Poisson process**: is a Markov counting process $N(t)$, $t \geq 0$, such that $N(t)$ is the number of arrivals up to time t.
Poisson Process: properties

- **Poisson process**: A Markov counting process $N(t)$, $t \geq 0$, $N(t)$ is the number of arrivals up to time t.

- **Properties of a Poisson process**:
 - $N(0) = 0$
 - $P\{\text{an arrival in time } \Delta t\} = \lambda \Delta t$
 - No simultaneous arrivals

- We will next see an important example. Assuming that arrivals are occurring at rate λ, we will calculate probability of n arrivals in time t.
Poisson process: analysis

- A process is in state i, if i arrivals have occurred.
- $P_i(t)$ is the probability the process is in state i.

In state i, probability is flowing in from state $i-1$, and is flowing out to state $i+1$, in both cases governed by the rate λ. Thus

$$\frac{dP_i(t)}{dt} = -\lambda P_i(t) + \lambda P_{i-1}(t) \quad n = 0,1,\ldots$$

We’ll solve it first for $P_0(t)$, then for $P_1(t)$, then …
Poisson process: Solution for $P_0(t)$

$P_0 = P\{\text{process in state 0}\}$

$P_0(t + \Delta t) = P_0(t)[1 - \lambda \Delta t]$

$P_0(t + \Delta t) - P_0(t) \over \Delta t = -\lambda P_0(t)$

$\frac{dP_0(t)}{dt} = -\lambda P_0(t)$

Solution:

$\ln(P_0(t)) = -\lambda t + C$

$P_0(t) = C_2 e^{-\lambda t}$

Since $P_0(0) = 1$, $C_2 = 1$, $P_0(t) = e^{-\lambda t}$
Poisson Process: General solution

We need to solve
\[\frac{dP_i(t)}{dt} = -\lambda P_i(t) + \lambda P_{i-1}(t) \quad n = 0,1,.. \]

Using the expression for \(P_0(t) \), we can solve it for \(P_1(t) \).

Solving recursively, we get
\[P_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} \quad n = 0,1,.. \]

Which we know is Poisson distribution!
Poisson Process: Time between Two Events

Here we’ll show that the time to next arrival is exponentially distributed.

\[P\{t_{i+1} > t\} = P\{\text{no arrival in } (t_i, t_i + t)\} = e^{-\lambda t} \]

Thus the cumulative distribution function (cdf) is given by

\[F(t) = P\{0 \leq T \leq t\} = 1 - e^{-\lambda t} \]

Since the density function is derivative of cdf, differentiating both sides, we get

\[f(t) = \lambda e^{-\lambda t} \]

Exponential distribution