Fault Tolerant Computing
CS 530
Reliability Analysis

Yashwant K. Malaiya
Colorado State University
Reliability Analysis: Outline

Reliability measures:
- Reliability, availability, Transaction Reliability,
- MTTF and R(t), MTBF

Basic Cases
- Single unit with permanent failure, failure rate
- Single unit with temporary failures

Combinatorial Reliability: Block Diagrams
- Serial, parallel. K-out-of-n systems
- Imperfect coverage

Redundancy
- TMR, spares
- Generalized
Reliability Analysis

• Permanent faults
 ▪ The unit will eventually fail. Thus reliability “decays”.

• Temporary faults
 ▪ Faults come and go. Often Steady state characterization is possible.
 ▪ Permanent faults subject to repair are modeled as temporary faults.

• Design faults
 ▪ Reliability growth occurs during testing & debugging. We will study this under “Software Reliability” later.
Why Mathematical Analysis?

- You can determine reliability by constructing a large number of copies of the target system, and collecting failure data. However, that would be infeasible except for special cases.
- Thus we need to be able to determine the reliability before a system is built, by using the information we have about the components and the proposed architecture.
Basic Reliability Measures

- **Reliability**: durational (default)
 \[R(t) = P\{\text{correct operation in duration } (0,t)\} \]
 - This is the default definition of reliability.
- **Availability**: instantaneous
 \[A(t) = P\{\text{correct operation at instant } t\} \]
 - Applied in presence of temporary failures
 - A steady-state value is the expected value over a range of time.
- **Transaction Reliability**: single transaction
 \[R_t = P\{\text{a transaction is performed correctly}\} \]
- The term “Reliability” is sometimes used with a non-standard meaning.
Mean time to …

- **Mean Time to Failure (MTTF):** expected time the unit will work without a failure.

- **Mean time between failures (MTBF):** expected time between two successive failures.
 - Applicable when faults are temporary.
 - The time between two successive failures includes repair time and then the time to next failure.
 - Approximately equal to

- **Mean time to repair (MTTR):** expected time during which the unit is non-operational.
Mean time to …

Average Rated Life for Various Types of Bulbs

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent</td>
<td>750-2,000</td>
</tr>
<tr>
<td>Compact Fluorescent CFL</td>
<td></td>
</tr>
<tr>
<td>Plug-in</td>
<td>10,000-20,000</td>
</tr>
<tr>
<td>Screw-based</td>
<td>8,000-10,000</td>
</tr>
<tr>
<td>Halogen</td>
<td>2,000-4,000</td>
</tr>
<tr>
<td>LED</td>
<td>40,000-50,000</td>
</tr>
</tbody>
</table>

The Great Lightbulb Conspiracy: The Phoebus cartel engineered a shorter-lived lightbulb and gave birth to planned obsolescence [IEEE Spectrum](https://spectrumbusiness.ieee.org)
Mean Time to Failure (MTTF)

- There is a very useful general relation between MTTF and $R(t)$. Here T is time to failure, which is a random variable.

\[MTTF = E(T) = \int_0^\infty t f(t) \, dt \]

\[= -\int_0^\infty t \frac{dR(t)}{dt} \, dt \]

\[= [-tR(t)]_0^\infty + \int_0^\infty R(t) \, dt \]

Thus \(MTTF = \int_0^\infty R(t) \, dt \)

\[Note:\]
\[R(t) = 1 - P\{\text{failure in } (0,t)\} \]
\[= 1 - P\{0 \leq T \leq t\} \]
\[= 1 - F(t) \]
\[\therefore \frac{dF(t)}{dt} = -\frac{dR(t)}{dt} \]
\[or f(t) = -\frac{dR(t)}{dt} \]

\[Note:\]
\[xe^{-x} \to 0 \text{ as } x \to \infty \]
and $R(t)$ is generally of the form e^{-at}
Thus $tR(t) \to 0$ as $t \to \infty$.

Worth Remembering!
Failures with Repair

- Time between failures: time to repair + time to next failure

\[\text{MTBF} = \text{MTTF} + \text{MTTR} \]
- MTBF, MTTF are same same when MTTR \(\approx 0 \)
- Steady state availability = \(\frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}} \)
Downtime of Cloud Services

Cloud Downtime in 2015

<table>
<thead>
<tr>
<th>Provider</th>
<th>Downtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM SoftLayer</td>
<td>17 hours</td>
</tr>
<tr>
<td>Google Cloud Platform</td>
<td>11 hours 34 minutes</td>
</tr>
<tr>
<td>Microsoft Azure</td>
<td>10 hours 49 minutes</td>
</tr>
<tr>
<td>Amazon Web Services</td>
<td>2 hours 30 minutes</td>
</tr>
</tbody>
</table>

And the cloud provider with the best uptime in 2015 is .. [Network World](http://www.networkworld.com)
Mission Time (High-Reliability Systems)

- Reliability throughout the mission must remain above a threshold reliability R_{th}.
- **Mission time** T_M: defined as the duration in which $R(t) \geq R_{th}$.
- R_{th} may be chosen to be perhaps 0.95.
- Mission time is a strict measure, used only for very high reliability missions.
Two Basic cases

• We next consider two very important basic cases that serve as the basis for time-dependent analysis.

1. Single unit subject to permanent failure
 • We will assume a constant failure rate to evaluate reliability and MTTF.

2. Single unit with temporary failures
 • System has two states Good and Bad, and transitions among them are defined by transition rates.
 • Both of these are example of Markov processes.
Constant Failure Rate Assumption

- We will always assume a constant failure rate.
 - It keeps analysis simple.
 - During operating life, the failure rate is approximately constant.

- The Bath-Tub curve:
 - In the beginning the failure rate is high because the weaker devices fail due to “infant mortality”. Near the end the failure rate is again high due to “aging” or wear-out of devices.
Basic Cases: Single Unit with Permanent Failure

• Failure rate is the probability of failure/unit time
• Assumption: constant failure-rate λ

$$Z(t) = \lambda$$

The state transition diagram & the differential equation represent What we call Markov Modeling.

$$\frac{dp_0(t)}{dt} = -\lambda \ p_0(t)$$ since the rate of leaving state 0 depends on probability of being in state 0

$$p_0(0) = 1$$ initial condition
Single Unit with Permanent Failure (2)

\[\frac{dp_0(t)}{dt} = -\lambda \ p_0(t) \]
\[p_0(0) = 1 \]

Solution: \[p_0(t) = e^{-\lambda t} \]

Since \[R(t) = p_0(t) \]
\[R(t) = e^{-\lambda t} \]

"The Exponential reliability law"

At \[t = \frac{1}{\lambda} \], \[R(t) = e^{-1} = 0.368 \]
Single Unit: Permanent Failure (3)

\[R(t) = e^{-\lambda t} \]

A(t) is same as R(t) in this case.

\[MTTF = \int_0^\infty R(t)dt = \int_0^\infty e^{-\lambda t} dt \]

\[= \left[-\frac{e^{-\lambda t}}{\lambda}\right]_0^\infty \]

\[= \frac{1}{\lambda} \]

- **Ex 1**: a unit has MTTF = 30,000 hrs. Find failure rate. \(\lambda = \frac{1}{30,000} = 3.3 \times 10^{-5}/hr \)

- **Ex 2**: Compute mission time \(T_M \) if \(R_{th} = 0.95 \).
 \[e^{-\lambda T_M} = 0.95 \quad T_M = -\ln(0.95)/\lambda \approx 0.051/\lambda \]

- **Ex 3**: Assume \(\lambda = 3.33 \times 10^{-5} \), and \(R_{th} = 0.95 \) find \(T_M \).
 Ans: \(T_M = 1538.8 \) hrs
 (compare with \(MTTF = 30,000 \))
Single Unit: Temporary Failures(1)

- Temporary: intermittent, transient, permanent with repair

\[
\frac{dp_0(t)}{dt} = -\lambda \ p_0(t) + \mu \ p_1(t)
\]

\[
\frac{dp_1(t)}{dt} = +\lambda \ p_0(t) - \mu \ p_1(t)
\]

can be solved by laplace transform etc.

\[
p_0(t) = p_0(0)e^{-(\lambda +\mu)t} + \frac{\mu}{\lambda + \mu} (1 - e^{-(\lambda +\mu)t})
\]

Similarly we can get an expression for \(p_1(t)\), however it is not needed since \(p_1(t) = 1 - p_0(t)\).
Single Unit: Temporary Failures(2)

- \(p_0(t) = p_0(0)e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}(1 - e^{-(\lambda + \mu)t}) \)

- Availability \(A(t) = p_0(t) \)

Thus \(A(t) = p_0(0)e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}(1 - e^{-(\lambda + \mu)t}) \)

- Note that steady-state probabilities exist:

 \(t \rightarrow \infty, \ p_0(t) = \frac{\mu}{\lambda + \mu}, \ p_1(t) = \frac{\lambda}{\lambda + \mu} \)

- Steady-state availability is \(\frac{\mu}{\lambda + \mu} \)
Single Unit: Temporary Failures (3)

- Reliability (durational)
 \[R(t) = P\{\text{no failures in (0,t)}\} \]
 \[= P\{\text{in Good at } t\} \]
 \[= e^{-\lambda t} \]

 same as permanent failure

- Thus MTTF = \(\frac{1}{\lambda} \)

- Mission time: also same

Note that when we say no failures in (0,t), even a brief failure is a failure. Thus R(t) may be too strict a measure when brief failures may be acceptable.
Combinatorial Reliability

This is a part of classic reliability theory. **Objective** is: Given a
- systems structure in terms of its units
- reliability attributes of the units
- some simplifying assumptions

- We need to **evaluate the overall reliability** measure.

There are **two extreme cases** we will examine first:
- Series configuration
- Parallel configuration
- Other cases involve combinations and other configurations.

- Note that conceptual modeling is applicable to $R(t)$, $A(t)$, $R_t(t)$. A system is either good or bad.
Series configuration: all units are essential. System fails if one of them fails.

- **Assumption**: statistically independent failures in units.

\[
R_S = P\{U_1 \text{ good} \cap U_2 \text{ good} \cap U_3 \text{ good}\} \\
= P\{U_1 \text{ g}\}P\{U_2 \text{ g}\}P\{U_3 \text{ g}\} \\
= R_1 R_2 R_3
\]

In general \(R_S = \prod_{i=1}^{n} R_i \)
Series configuration

If \(R_i(t) = e^{-\lambda_i t} \)
then \(R_s(t) = \prod e^{-\lambda_i t} = e^{-[\lambda_1 + \lambda_2 + \cdots + \lambda_n]t} \)
i.e. system failure rate is the sum of individual failure rates:
\[\lambda_s = \lambda_1 + \lambda_2 + \cdots + \lambda_n \]

This gives us a nice way to estimate the overall failure rate, when all the individual units are essential. This is the basis of the approach used in the popular “Military Handbook” MIL-HDBK-217 approach for estimating the failure rates for different systems.

The failure rates of individual units are estimated using empirical formulas. For example the failure rate of a VLSI chip is related to its complexity etc.

The reliability block diagrams like this are only conceptual, not physical.
“A chain is as strong as it's weakest link”

Let us see for a 4-unit series system

• Assume \(R_1 = R_2 = R_3 = 0.95, \) \(R_4 = 0.75 \)
 - \(R_S = 0.95 \times 0.95 \times 0.95 \times 0.75 = 0.643 \)

• Thus a chain is slightly weaker than its weakest link!

The plot gives reliability of a 10-unit system vs a single system. Each of the 10 units are identical.

• More units, less reliability.

Combinatorial: Series

Do you agree?
Combinatorial: Parallel

- **Parallel configuration:** System is good when least one of the several replicated units is good. A parallel configuration represents an *ideal* redundant system, ignoring any overhead.

\[
R_s = 1 - P\{\text{all units bad}\} \\
= 1 - P\{U_1 \text{ bad} \cap U_2 \text{ bad} \cap U_3 \text{ bad}\} \\
= 1 - P\{U_1 \text{ b.}\} P\{U_2 \text{ b.}\} P\{U_3 \text{ b.}\} \\
= 1 - (1 - R_1)(1 - R_2)(1 - R_3)
\]

In general \(R_s = 1 - \prod_{i=1}^{n} (1-R_i) \)

\[i.e. \quad \bar{R}_s = \prod_{i=1}^{n} \bar{R}_i \]

Where \(\bar{R} \) represents 1-R, i.e. “unreliability”
Parallel Configuration: Example

Problem: Need system reliability \(R_s = 1 - \varepsilon \)

How many parallel units are needed if \(R_1 = R_2 = \cdots = R_m, R_m < R_s \)?

Solution: \(1 - R_s = (1 - R_m)^x \)

\[\varepsilon = (1 - R_m)^x \]

\[x = \frac{\ln \varepsilon}{\ln(1 - R_m)} \]

Assume \(R_s = 0.9999 (\varepsilon = 0.0001) \),

\(R_m = 0.9 \)

gives \(x = 4 \).

Sometimes it is more convenient to talk in terms of “unreliability”

Remember, we’re consider an ideal system.
An Example Problem

The failure rate for sub-units A1 and A2 is λ_A, for sub-units B1 and B2, the failure rate is λ_B, for sub-units C1 and C2, the failure rate is λ_C. You can assume independence of failures for sub-units. Find an expression for $R(t)$ and MTTF.

- $R(t) = [P\{A1 \text{ is good}\}P\{A2 \text{ is good}\} + P\{A1 \text{ is good}\}P\{A2 \text{ is bad}\} + P\{A1 \text{ is bad}\}P\{A2 \text{ is good}\}] \cap P\{B \text{ is good}\}$
 \[= [1 - P\{A1 \text{ is bad}\}P\{A2 \text{ is bad}\}] \cap P\{B \text{ is good}\}\]
 \[= [1 - (1 - e^{-\lambda_A t})^2] e^{-\lambda_B t} = [2e^{-\lambda_A t} - e^{-2\lambda_A t}] e^{-\lambda_B t}\]
 \[= [2 - e^{-\lambda_A t}] e^{-(\lambda_A + \lambda_B)t}\]

- $MTTF = \int_0^\infty R_1(t)dt = \int_0^\infty [2 - e^{-\lambda_A t}] e^{-(\lambda_A + \lambda_B)t} dt = 2 \int_0^\infty e^{-(\lambda_A + \lambda_B)t} dt - \int_0^\infty e^{-(2\lambda_A + \lambda_B)t} dt = \frac{2}{\lambda_A + \lambda_B} - \frac{1}{2\lambda_A + \lambda_B}$