PART 2. SCALABLE FRAMEWORKS FOR REAL-TIME BIG DATA ANALYTICS

2. SERVING LAYER: CASE STUDY - CASSANDRA

Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs535

FAQs
- PA2 deadline has been extended (11/7)

Today's topics
- Cassandra
- Partitioning

Non-consistent hashing vs. consistent hashing
- When a hash table is resized
 - Non-consistent hashing algorithm requires re-hash of the complete table
 - Consistent hashing algorithm requires only partial rehash of the table

Consistent hashing (1/3)

Identifier circle with m = 3
Consistent hash function assigns each node and key an m-bit identifier
Using a hashing function

Hashing value of IP address
m-bit Identifier: 2^m identifiers
m has to be big enough to make the probability of two nodes or keys hashing to the same identifier negligible
Consistent hashing (2/3)

Consistent hashing assigns keys to nodes:
Key \(k \) will be assigned to the first node whose identifier is equal to or follows \(k \) in the identifier space

- Key 2 will be stored in machine C
 \(\text{successor}(2) = 5 \)

- Machine B is the successor node of key 1.
 \(\text{successor}(1) = 1 \)

Consistent hashing (3/3)

If machine C leaves circle, \(\text{successor}(5) \) will point to A
If machine N joins circle, \(\text{successor}(2) \) will point to N

New node N

Scalable Key location

- In consistent hashing:
 - Each node need only be aware of its successor node on the circle
 - Queries can be passed around the circle via these successor pointers until it finds the resource

- What is the disadvantage of this scheme?
 - It may require traversing all \(N \) nodes to find the appropriate mapping

Example of use

- Apache Cassandra’s partitioning scheme
- Couchbase
- Openstack’s object storage service Swift
- Akamai Content delivery network
- Data partitioning in Voldemort
- Partitioning component of Amazon’s storage system Dynamo

This material is built based on

- Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Scalable Key location in Chord

- Let m be the number of bits in the key/node identifiers
- Each node n, maintains,
 - A routing table with (at most) m entries
 - Called the finger table
 - The i^{th} entry in the table at node n, contains the identity of the first node, s_i, that succeeds n by at least 2^{i-1} on the identifier circle
 - i.e. $s_i = \text{successor}(n + 2^{i-1} \mod 2^m)$, where $1 \leq i \leq m$

Definition of variables for node n_i, using m-bit identifiers

- $\text{finger}[i].\text{start} = (n + 2^{i-1}) \mod 2^m$, $1 \leq k \leq m$
- $\text{finger}[i].\text{interval} = [\text{finger}[i].\text{start}, \text{finger}[i+1].\text{start})$
- $\text{finger}[i].\text{node} = \text{first node} \geq n.\text{finger}[i].\text{start}$
- $\text{successor} = \text{the next node of the identifier circle}$
- $\text{predecessor} = \text{the previous node on the identifier circle}$

Finger tables

Lookup process (1/3)

- Each node stores information about only a small number of other nodes
- A node's finger table generally does not contain enough information to determine the successor of an arbitrary key k
- What happens when a node n_i does not know the successor of a key k?
 - If n_i finds a node whose ID is closer than its own to k, that node will know more about the identifier circle in the region of k than n_i does

Lookup process (2/3)

- First, check the data is stored in n_i
 - If it is, return the data
- Otherwise,
 - n_i searches its finger table for the node j
 - Whose ID most immediately precedes k
 - Ask j for the node it knows whose ID is closest to k
 - Do not overshoot
• reduced at most

After the distance between the node handling the query and the predecessor p halves in each step, and is at most \(f \) steps, the distance will be 1 (you have arrived at \(p \)).

\[\text{Distance from } n \text{ to } p \text{ is at least } \frac{1}{2} \text{ the distance from } n \text{ to } p. \]

The number of forwardings necessary will be \(O(\log N) \).

Proof continued

\(f \) and \(p \) are both in \(n \)'s \(f \) pointer interval, and the distance between them is at most \(2^f \). This means \(f \) is closer to \(p \) than \(n \) or \(n \) is equivalent.

Distance from \(n \) to \(p \) is at most half of the distance from \(n \) to \(p \).

If the distance between the node handling the query and the predecessor \(p \) halves in each step, and is at most \(2^f \). Within \(f \) steps the distance will be 1 (you have arrived at \(p \)).

The number of forwardings necessary will be \(O(\log N) \).

After \(\log N \) forwardings, the distance between the current query node and the key \(k \) will be reduced at most \(2^{\log N} \).

The average lookup time is \(\frac{1}{2} \log N \).

Requirements in node Joins

- In a dynamic network, nodes can join (and leave) at any time

1. Each node’s successor is correctly maintained
2. For every key \(k \), node \(\text{successor}(k) \) is responsible for \(k \)

Theorem 2.

With high probability (or under standard hardness assumptions), the number of nodes that must be contacted to find a successor in an \(N \)-node network is \(O(\log N) \).

Proof

Suppose that node \(n \) tries to resolve a query for the successor of \(k \). Let \(p \) be the node that immediately precedes \(k \). We analyze the number of steps to reach \(p \).

If \(n \neq p \), then \(n \) forwards its query to the closest predecessor of \(k \) in its finger table. (\(i \) steps) Node \(k \) will finger some node \(f \) in this interval. The distance between \(n \) and \(f \) is at least \(2^{\log N} \).
Tasks to perform node join

1. Initialize the predecessor and fingers of node \(n \)
2. Update the fingers and predecessors of existing nodes to reflect the addition of \(n \)
3. Notify the higher layer software so that it can transfer state (e.g. values) associated with keys that node \(n \) is now responsible for

```c
#define successor(n).node
// node n joins the network
// n' is an arbitrary node in the network
n.join(n')
if (n')
    init_finger_table(n');
update_others();
// move keys in (n', n].successor
else // if n is going to be the only node in the network
for i = 1 to m
    finger[i].node = n;
    predecessor = successor.i.predecessor;
    successor.i.predecessor = n;
```

```c
n.find_successor(id)
    n' = find_predecessor(id);
    return n'.successor;
```

```c
n.find_predecessor(id)
    n' = n;
    while (id is NOT in (n', n'.successor))
        n' = n.closest_preceding_finger(id);
    return n';
```

```c
n.closest_preceding_finger(id)
    for i = m down to 1
        if (finger[i].node is in (n, id))
            return finger[i].node;
    return n;
```

Step 1: Initializing fingers and predecessor (1/2)

- New node \(n \) learns its predecessor and fingers by asking any arbitrary node in the network \(n' \) to look them up

```c
n.init_finger_table(n')
    for i = 1 to m
        if (finger[i].start is in (n, n.finger[i].node))
            finger[i].node = finger[i].node;
        else
            finger[i].node = n'.find_successor(finger[i].start);
```

Join 5 (After `init_finger_table(n')`)
Step 1: Initializing fingers and predecessor (2/2)

- Naïve run for find_successor will take $O(\log N)$
 - For m finger entries
 - $O(m \log N)$
- How can we optimize this?
 - Check if i^{th} node is also correct for the $(i+1)^{th}$ node
 - Ask immediate neighbor and copy of its complete finger table and its predecessor
 - New node can use these table as hints to help it find the correct values

Updating fingers of existing nodes

- Node n will be entered into the finger tables of some existing nodes

```java
n.update_others();
for (i = 1 to m)

  p = find_predecessor(n - 2\(^i\) - 1);
  p.update_finger_table(n, i);
  p.update_finger_table(s, i);
```

- Node n will become the i^{th} finger of node p if and only if,
 - p precedes n by at least 2^{i-1}
 - The i^{th} finger of node p succeeds n

Transferring keys

- Move responsibility for all the keys for which node n is now the successor
 - It involves moving the data associated with each key to the new node
- Node n can become the successor only for keys that were previously the responsibility of the node immediately following n
 - n only needs to contact that one node to transfer responsibility for all relevant keys

Example

- If you have following data,

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Car</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim</td>
<td>36</td>
<td>Camaro</td>
<td>M</td>
</tr>
<tr>
<td>Carol</td>
<td>37</td>
<td>BMW</td>
<td>F</td>
</tr>
<tr>
<td>Jenny</td>
<td>15</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>Suzy</td>
<td>9</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- Cassandra assigns a hash value to each partition key

<table>
<thead>
<tr>
<th>Partition Key</th>
<th>Summer 3 hash value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim</td>
<td>2249582670023323232</td>
</tr>
<tr>
<td>Carol</td>
<td>7772336923236907684</td>
</tr>
<tr>
<td>Jenny</td>
<td>5723337285048380876</td>
</tr>
<tr>
<td>Suzy</td>
<td>1168854627309403158</td>
</tr>
</tbody>
</table>

Cassandra cluster with 4 nodes

- Node A
 - 46165861549427867904
 - 46165861549427867903
 - Data Center ABC
- Node B
 - 22332303869473607
 - 22332303869473607
 - 46165861549427867904
 - 206500977023529
- Node C
 - 116850864739239015
 - 46165861549427867903
- Node D
 - 9223372854036780875
 - 9223372854036780875
 - 46165861549427867904
 - 206500977023529

- Cassandra assigns a hash value to each partition key

<table>
<thead>
<tr>
<th>Partition Key</th>
<th>Summer 3 hash value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim</td>
<td>2249582670023323232</td>
</tr>
<tr>
<td>Carol</td>
<td>7772336923236907684</td>
</tr>
<tr>
<td>Jenny</td>
<td>5723337285048380876</td>
</tr>
<tr>
<td>Suzy</td>
<td>1168854627309403158</td>
</tr>
</tbody>
</table>
Partitioning

- Partitioner is a function for deriving a token representing a row from its partition key, typically by hashing.
- Each row of data is then distributed across the cluster by value of the token.
- Read and write requests to the cluster are also evenly distributed.
- Each part of the hash range receives an equal number of rows on average.

Cassandra offers three partitioners:
- **Murmur3Partitioner** (default): uniformly distributes data across the cluster based on MurmurHash hash values.
- **RandomPartitioner**: uniformly distributes data across the cluster based on MD5 hash values.
- **ByteOrderedPartitioner**: keeps an ordered distribution of data lexically by key bytes.

Murmur3Partitioner

- Murmur hash is a non-cryptographic hash function.
- Created by Austin Appleby in 2008.
- Multiply (MU) and Rotate (R).
- Current version Murmur 3 yields 32 or 128-bit hash value.
- Murmur3 has low bias of under 0.5% with the Avalanche analysis.

Testing with 42 Million keys

Measuring the quality of hash function

- Hash function quality

 \[
 \frac{1}{n} \sum_{j=0}^{n} \frac{k_j}{(n/2^m)(n + 2m - 1)}
 \]

 - Where, \(k_j \) is the number of items in \(j \)-th slot.
 - \(n \) is the total number of items.
 - \(m \) is the number of slots.

Comparison between hash functions
Avalanche Analysis for hash functions

- Indicates how well the hash function mixes the bits of the key to produce the bits of the hash
- Whether a small change in input causes a significant change in the output
- Whether or not it achieves "avalanche"
 - \(P(\text{output bit } i \text{ changes} | \text{input bit } j \text{ changes}) = 0.5 \) for all \(i, j \)
- If we keep all of the input bits the same, and flip exactly 1 bit
 - Each of our hash function's output bits changes with probability \(\frac{1}{2} \)
 - The hash is "biased"
- If the probability of an input bit affecting an output bit is greater than or less than 50%
- Large amounts of bias indicate that keys differing only in the biased bits may tend to produce more hash collisions than expected.

RandomPartitioner

- RandomPartitioner was the default partitioner prior to Cassandra 2.1
- Uses MD5
- 0 to \(2^{64} - 1 \)

ByteOrderPartitioner

- This partitioner orders rows lexically by key bytes
- The ordered partitioner allows ordered scans by primary key
 - If your application has user names as the partition key, you can scan rows for users whose names fall between Jake and Joe
- Disadvantage of this partitioner
 - Difficult load balancing
 - Sequential writes can cause hot spots
 - Uneven load balancing for multiple tables