Today’s topics
- Pregel: Think like a vertex!
- GraphX
 - Vertex cut, RDD based graph parallel architecture

Graph partitioning: Edge-cut
- Vertices are equally distributed among partitions
- Then, edges are distributed across partitions
 - Edges along with the corresponding vertices are replicated and passed according to the requirement between partitions
 - Communication cost associated with edge-cut algorithms is directly proportional to the number of edges cut
- Both edge data and vertex data are passed to between partitions

Graph partitioning: Vertex-cut
- Edges are equally distributed
- Then, vertices are cut and replicated across the partitions
 - Vertex data is passed between the partitions
 - Communication cost is directly proportional to the number of the vertex replicas
 - Load balancing factor is determined by the number of edges assigned to each of the partitions
- Passes just vertex data
Graph partitioning: Vertex-cut: Example

- Passes just vertex data

Example
Distribute edges equally over 2 partitions with a hash function, \((V_{s} + V_{d}) \mod n\), where \(V_{s}\) is the source vertex id, and \(V_{d}\) is the dest vertex id.

\((1,2), (5,2), (2,5), (5,4), (4,5), (4,3)\) are placed into the partition 1
Rest of them are placed into the partition 2

Assume, vertices are partitioned using hash partitioner, \(v \mod n\)
Finally, it will create incomplete subgraphs

Pregel vs. MapReduce

- Many of graph algorithms can be written as a series of chained MapReduce invocations
 - Pregel
 - Once the vertices and edges are loaded into computing nodes, they will stay on that machine
 - Only messages will be transferred through the network
 - MapReduce
 - Passes the entire state of graph for every iteration
 - External coordinator is required to create a “chain” of MapReduce jobs

System Architecture

- Master/worker model
 - Worker
 - Processes user-defined tasks
 - Communicates with other workers (messaging)
 - Master
 - Maintains information about workers
 - No portion of graph assigned
 - Recovers from faults
 - Uses monitoring tools
 - Underlying persistent data storage: GFS or BigTable
 - Temporary data is stored on local disk

Step-by-step execution (1/4)

1. A client launches a Pregel job
 - Many copies of the user program begin executing on a cluster of machines
 - One of these copies acts as the master
 - Workers use the cluster management system’s name service to discover the master’s location
 - Send registration messages to the master

http://www.cs.colostate.edu/~cs535

Spring 2019 Colorado State University, page 2
Step-by-step execution (2/4)

2. The master assigns a partition of the input to each worker
 - Worker:
 - Loads the vertices and marks them as active
 - Maintains the state of its section of the graph
 - Executes user’s `Compute()` method on its vertices
 - Manages messages to and from other workers

Step-by-step execution (3/4)

3. The master instructs each worker to perform a superstep
 - Performs user-defined function on the active vertices
 - Messages are sent asynchronously
 - Before the end of the superstep
 - This step is repeated until: (a) all of the vertices are inactive simultaneously && (b) no messages are transferred

Step-by-step execution (4/4)

4. After the computation halts, the master may instruct each worker to save its portion of the graph

Fault tolerance (1/2)

- System maintains checkpoints
 - The master periodically requests the workers to save the state of their partitions to persistent storage
 - State is saved as checkpoints, and includes...
 - Vertex values, edge values, incoming messages

Fault tolerance (2/2)

- Failure detection
 - Regular “ping” message

- Recovery
 - The master reassigns graph partitions to the current available workers
 - The workers all reload their partition state from most recent available checkpoint

GEAR Workshop II | Large Scale Graph Analysis
Pregel: “Think Like Vertex!”
PageRank with Pregel

http://www.cs.colostate.edu/~cs535
PageRank Algorithm

- Link analysis algorithm
- Probability distribution
- Represents the likelihood that a person randomly clicking on links will arrive at any particular page
- Probability
 - Between 0 and 1
 - PageRank of 0.5
 - There is a 50% chance that a person clicking on a random link will be directed to the document with the 0.5 PageRank

Iterative approach

- A link to a page counts as a vote of support
- At t=0, PR(p;0)=1/N
- At each time step, the computation yields,
 \[PR(p; t+1) = \frac{1 - d}{N} + d \sum_{j \in \text{Out}(p)} \frac{PR(p; t)}{L(p_j)} \]

- Damping factor, d
 - An imaginary surfer who is randomly clicking on links and he/she will eventually stop
 - The probability that the imaginary person will continue in that step
 - Generally assumed as around 0.85

In Pregel

```java
public void Compute(MessageIterator* msgs) {
  if (superstep() >= 1) {
    double sum = 0;
    for (; !msgs->Done(); msgs->Next())
      sum += msgs->Value();
    *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
  }
  if (superstep() < 30) {
    const int64 n = GetOutEdgeIterator().size();
    SendMessageToAllNeighbors(GetValue() / n);
  } else {
    VoteToHalt();
  }
}
```

http://www.cs.colostate.edu/~cs535
GraphX unifies computation on Tables and Graphs

Providing a single system to support the entire pipeline

Two separate systems

Apache Spark RDD dataflow systems

Graph analysis frameworks

Dependency Graph

Data pipelining systems are not optimized for the Graph processing

- Hadoop is 60x slower than GraphLab
- Spark is 16x slower than GraphLab

Key Research Question:

“How can we naturally express and efficiently execute graph computation in a general purpose dataflow framework?”

Approach 1: Representation of data

Approach 2: Optimization of computing

http://www.cs.colostate.edu/~cs535
The Property Graph Data Model

- Property graph
 - Associates user-defined properties with each vertex and edge
 - Meta-data (e.g., user profiles and timestamps) and program state (e.g., the PageRank of vertices or inferred affinities)
- Dataflow model vs. property graph model
 - Dataflow systems whose operators (e.g., join) can span multiple collections
 - Operations in graph processing systems (e.g., vertex programs) are typically defined with a single property graph with a pre-declared, sparse structure

The GAS Decomposition

- Gonzalez et al.¹ observed that most vertex programs interact with neighboring vertices by collecting messages in the form of a generalized commutative associative sum and then broadcasting new messages in an inherently parallel loop

Types of graph computation

- **Gather**: Your computation gathers information from neighboring vertices
 - e.g., authority value of the HITS algorithm
 - e.g., current PageRank value

- **Apply**: The vertex applies an update the vertex property
 - e.g., update the authority value with the sum of new authority values after normalizing the value
 - e.g., Add passed PageRank values and normalize it and update the current PageRank value

- **Scatter**: A vertex should send out information to neighboring vertices.

PageRank example with the GAS decomposition

```python
def Gather(a: Double, b: Double) = a + b

def Apply(v, msgSum):
  PR(v) = 0.15 + 0.85 * msgSum
  if converged(PR(v))
    voteToHalt(v)

def Scatter(v, j) = PR(v) / NumLinks(v)
```

http://www.cs.colostate.edu/~cs535
The GAS Decomposition

- pull-based model of message computation
 - The system asks the vertex program for value of the message between adjacent vertices
 - Rather than the user sending messages directly from the vertex program
 - Therefore, vertex-cut is suitable for this style of computation
- Limited communication pattern
 - Supports only between adjacent vertices

Graph Partitioning: EdgePartition2D

- Inspired by the multilevel k-way partitioning
- 2D graph partitioning
- Upper bound of $2\sqrt{n} - 1$ on the vertex replication factor
 - where n is the number of partitions

Step 1: Creating a partition table

- If n is a perfect square
 - rows = the floor value of $(n + \text{cols} - 1)$
 - cols = the ceiling of the decimal value of \sqrt{n}
 - For example, if $n = 27$, cols = 6 and rows = 5
 - The last column would have 3 rows

Step 3: Storing edge properties

- Storing Edge Properties
 - (col x rows + rows) otherwise

Vertex assignment

- Using elementary modular hash $v \% n$
- Vertices are equally distributed among the partitions

Edge assignment

- The source vertex (sr) is mapped on the columns
 - If n is a perfect square
 - col = $\text{floor}(sr \times \text{mixingPrime} / \sqrt{n})$, if n is a perfect square
 - col = $\text{floor}(sr \times \text{mixingPrime} / \sqrt{n})$, otherwise
 - where mixingPrime is a large prime number to improve the balance of edge distributions
- The destination vertices (dr) is mapped on the rows
 - If n is a perfect square
 - row = $\text{floor}(dr \times \text{mixingPrime} / \sqrt{n})$, if n is a perfect square
 - row = $\text{floor}(dr \times \text{mixingPrime} / \sqrt{n})$, otherwise
 - and col < cols - 1
 - row = $\text{floor}(dr \times \text{mixingPrime} / \text{lastColIndex})$, otherwise

Edge assignment

- The source vertex (sr) is mapped on the columns
 - If n is a perfect square
 - col = $\text{floor}(sr \times \text{mixingPrime} / \sqrt{n})$, if n is a perfect square
 - col = $\text{floor}(sr \times \text{mixingPrime} / \sqrt{n})$, otherwise
 - where mixingPrime is a large prime number to improve the balance of edge distributions
- The destination vertices (dr) is mapped on the rows
 - If n is a perfect square
 - row = $\text{floor}(dr \times \text{mixingPrime} / \sqrt{n})$, if n is a perfect square
 - row = $\text{floor}(dr \times \text{mixingPrime} / \sqrt{n})$, otherwise
 - and col < cols - 1
 - row = $\text{floor}(dr \times \text{mixingPrime} / \text{lastColIndex})$, otherwise

http://www.cs.colostate.edu/~cs535

Spring 2019 Colorado State University, page 7
Understanding the effect of EdgePartition2D

- Let's locate an edge \((v_{\text{src}}, v_{\text{des}})\)
- All the edges where \(v_{\text{src}}\) is the source vertex
- Would be placed in the same column, col
- Example:
 - If \(v_{\text{src}} = 9\) and \(\text{mixingPrime} = 3\) for the 2D (row, col) partitions
 - \((9, 3)\% 3 = 2\)
- The actual cell will be determined by the destination vertex
 - If \(v_{\text{src}} = 2\) and \(\text{mixingPrime} = 3\)
 - \((2, 3)\% 3 = 1\)
- Therefore, the edge \((v_{\text{src}}, v_{\text{des}})\) is stored in the cell \((v_{\text{src}}, v_{\text{des}})\% 3\)

\[0 \quad 1 \quad 2 \quad 3 \quad 4\]

Understanding the effect of EdgePartition2D

- Therefore, any edge containing \(v\) has to be placed in any of \(\lfloor v/\text{mixingPrime}\rfloor \% \text{mixingPrime}\) partitions
- The upper bound on the vertex replication factor is \(\lfloor v/\text{mixingPrime}\rfloor \% \text{mixingPrime}\)
- This is directly related to the communication cost to synchronize the status of the vertex properties

```latex
\begin{array}{cc}
\text{Source} & \text{Destination} \\
0 & 1 \\
1 & 2 \\
2 & 3 \\
3 & 4 \\
\end{array}
```

Mirror Vertices

- High-degree vertices often have multiple neighbors on the same remote machine
- Avoiding repetitive communications to the same node

Graph Parallel Computation

- A sequence of join stages and group-by stage
 - Combined with map operations
 - Join stage
 - Vertices and edge properties are joined to form the triplet view
 - Triplet view: consisting each edge and its corresponding source and destination
 - Group-by stage
 - The triplets are grouped by source or destination vertex
 - Construct the neighborhood of each vertex and compute aggregation

Encoding Property Graphs as Tables

<table>
<thead>
<tr>
<th>Vertex Table (RDD)</th>
<th>Edge Table (RDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Graph</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cs.colostate.edu/~cs535
Join and group-by stages vs. the GAS decomposition

- Join and group-by stages captures the GAS decomposition
- Gathers: group-by with the same destination vertex
- Applies: intervening map operation
- Scatters: join stage with new vertex property to all adjacent vertices

Graph Operators

- mrTriplets (MapReduce Triplets) operator
 - map and group-by dataflow operator on the triplets view

Distributed Graph Representation

- GraphX represents graphs internally as a pair of vertex and edge collections built on the Spark RDD abstraction
 - Vertex collection
 - Hash-partitioned by the vertex ids
 - Edge collection
 - 2D Edge partitioning
 - Strong upper bounds on the communication complexity of operators
 - E.g. mrTriplets
 - The edges within a partition are clustered by source vertex id
 - CSR (compressed sparse raw)
 - Hash-indexed by their target id

Incremental View Maintenance

- Iterative graph algorithms often modify only a subset of the vertex properties in each iteration
- Incremental view maintenance
 - Avoiding unnecessary movement of unchanged data
 - GraphX tracks vertices with modified properties
 - Only the changed vertices are routed to their edge-partition join sites

Highly skewed power-law degree distributions

System Performance Comparison

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Edges</th>
<th>Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>twitter-2010 (5,4)</td>
<td>1,468,305,182</td>
<td>41,653,230</td>
</tr>
<tr>
<td>uk-2007-05 (5,4)</td>
<td>3,738,733,648</td>
<td>105,896,555</td>
</tr>
</tbody>
</table>

http://www.cs.colostate.edu/~cs535
System Performance Comparison [2/3]

(c) Spark did not finish within 8000 seconds, Giraph and Spark + Part. ran out of memory.

System Performance Comparison [3/3]

- Left: Strong scaling for PageRank on twitter data
- Right: Effect of partitioning on communication