Overview of Part A

- Duration: Week 1 ~ Week 6

1. Introduction to Big Data (W1)
2. Data Process Paradigms for Big Data (W2)
3. Distributed Computing Models for Scalable Batch Computing
 Part 1. MapReduce (W2)
 Part 2. In-Memory Cluster Computing Model: Apache Spark (W3, W4)
4. Real-time Streaming Computing Models (W5)
 Apache Storm and Twitter Heron
5. Scalable Distributed File Systems: Google File Systems I and II (W6)

2. Data Processing Paradigms For Big data

Lambda Architecture

Why we are looking at Lambda Architecture

- To perform large-scale analytics over voluminous data, we need a high-level architecture that provides,
 - Robustness
 - Fault-tolerant: Both against hardware failures and human mistakes
 - Support for a wide range of workloads and use cases
 - Low-latency reads and updates
 - Batch analytics jobs
 - Scalability
 - Scale-out capabilities with minimal maintenance

This material is built based on

FAQs

- Slides are available on the course web
- Canvas Discussion Board is available: Find your teammates!
- PA1
 - Hadoop and Spark installation guides are posted
 - If you would like to start your homework, please send me an email with your team information. I will assign the port range for your team.
Typical problems for scaling traditional databases

- Suppose that the application should track the number of page views for any URL a customer wishes to track
- The customer’s web page pings the application’s web server with its URL every time a page view is received
- Application tells you top 100 URLs by number of page views

<table>
<thead>
<tr>
<th>Id (integer)</th>
<th>User_id (integer)</th>
<th>url (varchar(255))</th>
<th>Pageviews (bigint)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direct access

- Direct access from Web server to the backend DB cannot handle the large amount of frequent write requests
- Timeout errors

Scaling with a queue

- Batch many increments in a single request
- What if your data amount increases even more?
 - Your worker cannot keep up with the writes
- What if you add more workers?
 - Again, the Database will be overloaded

Scaling by sharding the database

- Horizontal partitioning or sharding of database
 - Uses multiple database servers and spreads the table across all the servers
 - Chooses the shard for each key by taking the hash of the key modded by the number of shards
- What if your current number of shards cannot handle your data?
 - Your mapping script should cope with new set of shards
 - Application and data should be re-organized

Other issues

- Fault-tolerance issues
 - What if one of the database machines is down?
 - A portion of the data is unavailable

- Corruption issues
 - What if your worker code accidentally generated a bug and stored the wrong number for some of the data portions

How will Big Data techniques help?

- The databases and computation systems used in Big Data applications are aware of their distributed nature
 - Sharding and replications will be considered as a fundamental component in the design of Big Data systems
- Data is dealt as immutable
 - Users will mutate data continuously, however
 - The raw pageview information is not modified
- Applications will be designed in different ways

http://www.cs.colostate.edu/~cs535
Lambda Architecture

- Big Data data processing architecture as a series of layers
 1. Batch layer
 2. Serving layer
 3. Speed layer

1. Batch layer

- Precomputes results using distributed processing system
 - The component that performs the batch view processing
 - Batch view function: e.g., sum of values
 - Batch view function: e.g., running a predictive model

- After the computation→Stores an immutable, constantly growing master dataset
 - E.g., values, model, or distribution

- Computes arbitrary functions on that dataset
 - E.g., Hadoop, Spark, TensorFlow

2. Serving layer

- The batch layer emits batch view as the result of its functions
 - These views should be loaded somewhere and queried

- Specialized distributed database that loads in a batch view and makes it possible to do random reads on it

- Batch update and random reads should be supported
 - E.g., BigQuery, ElephantDB, Dynamo, MongoDB, Cassandra

3. Speed layer

- Q: Is there any data not represented in the batch view?

- Data arrives while the precomputation is running
 - With fully real-time data system

- Speed layer looks only at recent data
 - Whereas the batch layer looks at all the data (except real-time data) at once
 - Realtime view = function(realtime view, new data)

How long should the real-time view be maintained?

- Once the data arrives at the serving layer, the corresponding results in the real-time views are no longer needed
 - You can discard pieces of the real-time views

http://www.cs.colostate.edu/~cs535
Relevance of Data

Data absorbed into batch view
Data absorbed into real-time view

Lambda architecture

Practical Example with Lambda architecture

- Web analytics application tracking the number of page views over a range of days
 - The speed layer keeps its own separate view of [url, day]
 - Updates its views by incrementing the count in the view whenever it receives new data
 - The batch layer recomputes its views by counting the page views
 - To resolve the query, you query both the batch and realtime views
 - With satisfying ranges
 - Sum up the results

Extended examples and use cases

- Full re-computation vs. partial re-computation
 - e.g. using Bloom filters, PageRank algorithm
- Additive algorithms vs. approximation algorithms
 - e.g. HyperLogLog for count-distinct problem

Exercise

Suppose you are running an analytics system designed based on the Lambda Architecture. The first batch job has started without any dataset and it took 5 minutes to complete. The second batch job is scheduled 5 minutes after the first job has completed. The second batch job is performed with data that arrived in the first 10 minutes.

Question 1. After 7 minutes of running your system, what is the coverage of data stored in the Speed layer?
 a. none b. 0 ~ 7 minutes c. 5 ~ 7 minutes d. 0 ~ 5 minutes

Question 2. After 7 minutes of running your system, what is the coverage of data stored in the Batch layer?
 a. none b. 0 ~ 7 minutes c. 5 ~ 7 minutes d. 0 ~ 5 minutes

Exercise — Answers

Suppose you are running an analytics system designed based on the Lambda Architecture. The first batch job has started without any dataset and it took 5 minutes to complete. The second batch job is scheduled 5 minutes after the first job has completed. The second batch job is performed with data that arrived in the first 10 minutes.

Question 1. After 7 minutes of running your system, what is the coverage of data stored in the Speed layer?
 a. none b. 0 ~ 7 minutes c. 5 ~ 7 minutes d. 0 ~ 5 minutes

Question 2. After 7 minutes of running your system, what is the coverage of data stored in the Batch layer?
 a. none b. 0 ~ 7 minutes c. 5 ~ 7 minutes d. 0 ~ 5 minutes

http://www.cs.colostate.edu/~cs535
Composing algorithms

- The batch/speed layer will split your data
 - The exact algorithm on the batch layer
 - An approximate algorithm on the speed layer

- The batch layer repeatedly overrides the speed layer
 - The approximation gets corrected
 - Eventual accuracy

Example of Cardinality estimation

- Cardinality estimation
 - Count-distinct problem: finding number of distinct elements
 - Counting exact unique counts in the batch layer
 - A Hyper-LogLog as an approximation in the speed layer
 - Batch layer corrects what’s computed in the speed layer
 - Eventual accuracy

Recent trends in technology (1/3)

- Physical limits of how fast a single CPU can go
 - Parallelize computation to scale to more data
 - Scale-out solution

- Elastic clouds
 - Infrastructure as a Service (IaaS)
 - Rent hardware on demand rather than owning your hardware
 - Increase and decrease the size of your cluster nearly instantaneously
 - Simplifies system administration

Recent trends in technology (2/3)

- Open source ecosystem for Big Data
 - Batch computation systems
 - Hadoop
 - Spark
 - Flink

- Serialization frameworks
 - Serializes an object into a byte array from any language
 - Deserializes that byte array into an object in any language
 - Thrift, Protocol Buffers, and Avro

Recent trends in technology (3/3)

- Open source ecosystem for Big Data- cont.
 - Random-access NoSQL databases
 - Sacrifice the full expressiveness of SQL
 - Specializes in certain kinds of operations
 - Cassandra, HBase, MongoDB, etc.

- Messaging/queuing systems
 - Sends and consumes messages between processes in a fault-tolerant manner
 - Apache Kafka

- Real-time computation system
 - High throughput, low latency, stream-processing systems
 - Apache Storm

Mapping recent technologies
Kappa architecture

Kappa architecture is a simplified version of lambda architecture

Append only immutable log

Brainstorming Quiz

Lambda architecture vs. Kappa architecture

Question 1. What is the difference between Lambda architecture and Kappa architecture?
Question 2. Use case of Lambda architecture?
Question 3. User case of Kappa architecture?