PART 1. BATCH COMPUTING MODELS FOR BIG DATA ANALYTICS

1. DISTRIBUTED MODEL FOR SCALABLE BATCH COMPUTING - MAPREDUCE

Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs535

FAQs

- Questions about PA1
 - Send an email to cs535@cs.colostate.edu

- Use the posted configuration file with 2GB memory for the worker node

Objectives

- In-Memory Cluster Computing
 - Spark cluster
 - Scheduling
 - Programming with Spark

In-Memory Cluster Computing: Apache Spark
Spark Cluster

Spark cluster and resources

- Each application gets its own executor processes
 - Must be up and running for the duration of the entire application
 - Run tasks in multiple threads
 - Isolate applications from each other
 - Scheduling side (each driver schedules its own tasks)
 - Executor side (tasks from different applications run in different JVMs)
 - Data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system
Spark cluster [2/3]
- Spark is agnostic to the underlying cluster manager
 - As long as it can acquire executor processes, and these communicate with each other, it is relatively easy to run it even on a cluster manager that also supports other applications (e.g. Mesos/YARN)

Spark cluster [3/3]
- Driver program must listen for and accept incoming connections from its executors throughout its lifetime
 - Driver program must be network addressable from the worker nodes
- Driver program should run close to the worker nodes
 - On the same local area network

Cluster Manager Types
- Standalone
 - Simple cluster manager included with Spark
- Mesos
 - Fine-grained sharing option
 - Frequently shared objects for interactive applications
 - Mesos master determines the machines that handle the tasks
- Hadoop YARN
 - Resource manager in Hadoop 2

Dynamic Resource Allocation
- Dynamically adjust the resources that the applications occupy
 - Based on the workload
 - Your application may give resources back to the cluster if they are no longer used
- Only available on coarse-grained cluster managers
 - Standalone mode, YARN mode, Mesos coarse grained mode

Jobs in Spark application
- “Job”
 - A Spark action (e.g. save, collect) and any tasks that need to run to evaluate that action
- Within a given Spark application, multiple parallel tasks can run simultaneously
 - If they were submitted from separate threads
Job scheduling

- User runs an action (e.g., count or save) on an RDD
- Scheduler examines that RDD’s lineage graph to build a DAG of stages to execute
- Each stage contains as many pipelined transformations as possible
 - With narrow dependencies
 - The boundaries of the stages are the shuffle operations
 - For wide dependencies
 - For any already computed partitions that can short circuit the computation of a parent RDD

Example of Spark job stages

Stage 1: groupByKey
Stage 2: union
Stage 3: collect

Stages are split whenever the shuffle phases occur.

Default FIFO scheduler

- By default, Spark’s scheduler runs jobs in FIFO fashion
- First job gets the first priority on all available resources
 - Then the second job gets the priority, etc.
 - As long as the resource is available, jobs in the queue will start right away

Fair Scheduler

- Assigns tasks between jobs in a “round robin” fashion
 - All jobs get a roughly equal share of cluster resources
- Short jobs that were submitted when a long job is running can start receiving resources right away
 - Good response times, without waiting for the long job to finish
- Best for multi-user settings

Fair Scheduler Pools

- Supports grouping jobs into pools
 - With different options (e.g., weights)
 - “High-priority” pool for more important jobs
- This approach is modeled after the Hadoop Fair Scheduler

Default behavior of pools

- Each pool gets an equal share of the cluster
- Inside each pool, jobs run in FIFO order
- If the Spark cluster creates one pool per user
 - Each user will get an equal share of the cluster
 - Each user’s queries will run in order

In-Memory Cluster Computing: Apache Spark Programming with RDD
Linking with Spark --Java

- Spark 2.0.0 works with Java 7 and higher
- If you are using Java 8, Spark supports lambda expressions
- You can use the `org.apache.spark.api.java.function` package

Add a dependency in Spark

```java
groupID = org.apache.spark
artifactId = spark-core_2.11
Version = 2.0.0
```

Add an HDFS cluster

```java
groupID = org.apache.hadoop
artifactId = hadoop-client
Version = <your-hdfs-version>
```

Transformation

```java
groupID = org.apache.spark
artifactId = spark-core_2.11
Version = 2.0.0
```

Initializing Spark

- Create a `JavaSparkContext` object
 - Tells Spark how to access a cluster

```java
SparkConf conf = new SparkConf()
    .setAppName(appName)
    .setMaster(master);
JavaSparkContext sc = new JavaSparkContext(conf);
```

Your application name that shows in the cluster UI

Spark, Mesos, or YARN cluster URL

Parallelized Collection

- Parallelized collections are created by calling `JavaSparkContext`'s `parallelize` method on the existing collection in your driver program
- The elements of the collection are copied to form a distributed dataset that can be operated on in parallel
- Creating a parallelized collection holding the numbers 1 to 5:

```java
List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> distData = sc.parallelize(data);
JavaRDD<Integer> distData = sc.parallelize(data, 10);
```

Simple example

```java
Line 1: JavaRDD<String> lines = sc.textFile("data.txt");
Line 2: JavaRDD<Integer> lineLengths = lines.map(s -> s.length());
Line 3: int totalLength = lineLengths.reduce((a, b) -> a + b);
Line 4: lineLengths.persist(StorageLevel.MEMORY_ONLY);
```

- Line 1
 - `lines` is a pointer to the file
 - No loading or action is performed
- Line 2
 - Defines `lineLengths` as the result of a map transformation.
- Line 3
 - We run reduce, which is an action
 - Returns its answer to the driver program
- Line 4
 - If we also wanted to use `lineLengths` again later

Reading files

- HDFS
 - Spark and HDFS can be colocated on the same machine
 - Spark can take advantage of this data locality to avoid network overhead
 - hdfs://master:port/path

- Amazon S3
 - Set the `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` environment variables to your S3 credential
 - Pass a path starting with `s3n://` to Spark's file input methods, of the form `s3n://bucket/path/within-bucket`
 - Wildcard paths for S3, such as `s3n:// bucket/ my-files/*.txt` is allowed

- Regular file system, SQL, Apache Hive, Cassandra, Elasticsearch
- JDBC (MySQL/Postgres)
Passing Function to Spark

- Spark’s API relies heavily on passing functions in the driver program to run on the cluster.

- In Java, functions are represented as objects that implement `org.apache.spark.api.java.function`.
 - Implement the Function interfaces in your own class, either as an anonymous inner class or a named one, and pass an instance of it to Spark.
 - In Java 8, use lambda expression.
 - While we use lambda syntax for conciseness, it is easy to use all the same APIs in long-form.

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(new Function<String, Integer>() {
 public Integer call(String s) {
 return s.length();
 }
});
int totalLength = lineLengths.reduce(new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer a, Integer b) {
 return a + b;
 }
});

Function Classes

<table>
<thead>
<tr>
<th>Name</th>
<th>Method to Implement</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function<T, R></td>
<td>R call(T)</td>
<td>One input / one output</td>
</tr>
<tr>
<td>Function2<T1, T2, R></td>
<td>R call(T1, T2)</td>
<td>Two input / one output</td>
</tr>
<tr>
<td>FlatMapFunction<T, R></td>
<td>Iterable<R> call(T)</td>
<td>One input / 0 or more outputs</td>
</tr>
</tbody>
</table>

In-Memory Cluster Computing: Apache Spark Transformations

map() vs. filter() [1/2]

- The map() transformation takes in a function and applies it to each element in the RDD with the result of the function being the new value of each element in the resulting RDD.
- The filter() transformation takes in a function and returns an RDD that only has elements that pass the filter() function.
map() vs. filter()

- map() that squares all of the numbers in an RDD

```java
JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4));
JavaRDD<Integer> result = rdd.map(new Function<Integer, Integer>() {
    public Integer call(Integer x) {
        return x * x;
    }
});
System.out.println(StringUtils.join(result.collect(), ",");
```

map() vs. flatMap()

- Using flatMap() that splits lines to multiple words

```java
JavaRDD<String> lines = sc.parallelize(Arrays.asList("hello world", "hi"));
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
    public Iterable<String> call(String line) {
        return Arrays.asList(line.split(" "));
    }
});
words.first();  // returns "hello"
```

Two-RDD transformations on RDDs containing {1, 2, 3} and {3, 4, 5}

<table>
<thead>
<tr>
<th>name</th>
<th>purpose</th>
<th>results</th>
</tr>
</thead>
<tbody>
<tr>
<td>union()</td>
<td>union</td>
<td>{1, 2, 3, 4, 5}</td>
</tr>
<tr>
<td>intersection</td>
<td>intersection</td>
<td>{3}</td>
</tr>
<tr>
<td>subtract()</td>
<td>Remove the contents of one RDD (e.g. remove training data)</td>
<td>{1, 2}</td>
</tr>
<tr>
<td>cartesian()</td>
<td>Cartesian product</td>
<td>{(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (3, 6)}</td>
</tr>
</tbody>
</table>

reduce()

- Takes a function that operates on two elements of the type in your RDD and returns a new element of the same type

```java
Integer sum = rdd.reduce(new Function2<Integer, Integer, Integer>() {
    public Integer call(Integer x, Integer y) {
        return x + y;
    }
});
```
aggregate()

- With `aggregate()`, like `fold()`, we supply an initial zero value of the type we want to return.

```java
class AvgCount implements Serializable {
    public AvgCount(int total, int num) {
        this.total = total;
        this.num = num;
    }
    public int total;
    public int num;
    public double avg() {
        return total / (double) num;
    }
}
```

Code will be continued in the next slide.

aggregate()

- Function2 < AvgCount, Integer, AvgCount > addAndCount = new Function2 < AvgCount, Integer, AvgCount>() {
 public AvgCount call(AvgCount a, Integer x) {
 a.total += x;
 a.num += 1;
 return a;
 }
};
Function2 < AvgCount, AvgCount, AvgCount > combine = new Function2 < AvgCount, AvgCount, AvgCount>() {
 public AvgCount call(AvgCount a, AvgCount b) {
 a.total += b.total;
 a.num += b.num;
 return a;
 }
};
AvgCount initial = new AvgCount(0, 0);
AvgCount result = rdd.aggregate(initial, addAndCount, combine);
System.out.println(result.avg);

take(n)

- returns n elements from the RDD and attempts to minimize the number of partitions it accesses
- It may represent a biased collection
- It does not return the elements in the order you might expect
- Useful for unit testing

In-Memory Cluster Computing: Apache Spark

Persistence

<table>
<thead>
<tr>
<th>Level</th>
<th>Space used</th>
<th>CPU time</th>
<th>In memory</th>
<th>On disk</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y/N</td>
<td></td>
<td>Store RDD as serialized Java objects (one byte array per partition).</td>
</tr>
<tr>
<td>MEMORY_LARGE</td>
<td>Low</td>
<td>High</td>
<td>Y/N</td>
<td></td>
<td>Spills to disk if there is too much data to fit in memory.</td>
</tr>
<tr>
<td>MEMORY_LARGE</td>
<td>Medium</td>
<td>Some/Some</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory.</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N/Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>