Lecture01b: Search

CS540 1/18/18

Announcements

Class Piazza site going up
Accessible through class website
Mechanisms for discussing reading assignments (mandatory)

Off-campus students: send email to cs540@cs.colostate.edu
Dejan will respond

Comment on Piazza by Thursday
Warning: long paper

Search Topics

Applications
- Combinatorial Optimization
- Scheduling
- Planning

Algorithms
- Stochastic Local Search
- ... and others

Analyses
- Phase Transitions
- Structural Analysis
- Statistical Models

Combinatorial Problems

Informal Definition
Find an ordering, grouping or assignment of a discrete, finite set of objects that satisfies given conditions (from Hoos & Stutzle)

Example Search Problems

1. Satisfiability (SAT)
 - In CNF
 - Example: (A v ¬B) ^ (B v ¬C) ^ (C v ¬A) ^ (¬A v ¬B v ¬C)
 - Simple examples, clean formulation

2. Blocks World Path Planning
 - Harder examples, but closer to our project domain
 - Not as simple to formalize
 - Example: create formation with red blocks next to each other
 - Formalize:
 - No two blocks in one square
 - Blocks move one square at a time

Decision vs Optimization Problems

Decision
- Solution satisfies logical condition (e.g. SAT)
- For a given problem instance
 - Does a feasible solution exist? (decision variant)
 - What is a feasible solution? (search variant)

Optimization
- Add an objects function f that quantifies the quality of the solution
 - “Best” can minimize or maximize f
 - For a given problem instance
 - Does a solution exist with a given value of f (or better)? (decision variant)
 - What is a solution with optimal f? (search variant)
 - What is the optimal value of f? (evaluation variant)
Decision vs Optimization: Examples

1. Satisfiability
 - Decision:
 - Is there an assignment of truth values that satisfies the CNF equation?
 - Optimization:
 - Let \(f \) be the number of satisfied clauses
 - Find an assignment that maximizes \(f \)

2. Blocks World Path Planning
 - Decision
 - Is there a path that puts the red blocks together?
 - Optimization
 - Let \(f \) be the number of steps in a path
 - Find a shortest path that puts the red blocks together

Approaches to Search

Dimension #1: Solution Formation
- Construction
 - Start with NULL solution
 - Add to it
- Perturbation
 - Start with complete (but possibly incorrect) solution
 - Modify it

Construction vs Perturbation Example

- SAT: \((A \lor \neg B) \land (B \lor \neg C) \land (C \lor \neg A) \land (\neg A \lor \neg B \lor \neg C)\)
- Constructive:
 - {}, \{A\}, \{A, B\}, \{A, B, C\} (failure)
 - {}, \{\neg A\}, \{\neg A, \neg B\}, \{\neg A, \neg B, \neg C\} (success)
- Perturbation
 - \{A, B, C\} : \(f = 3 \), \{\neg A, B, C\} : \(f = 3 \), \{A, \neg B, C\} : \(f = 3 \), \{A, B, \neg C\} : \(f = 4 \)

Approaches to Search (II)

Dimension #2: Search Space Traversal
- Systematic
 - Guarantee completeness
 - Example: breadth-first, depth first, etc.
- Local Search
 - Traversal based on information in current state
 - Example: Greedy Search

Definitions

Completeness
- Given enough time, all feasible points in search space are explored

Any-time Property
- A solution is always available
- More time may produce better solution

Stochasticity
- Randomness is part of the search strategy
- Well, often pseudo-random...

When to use which approach?

Rules of Thumb:
- Systematic Search
 - When solution quality guarantees demand it
 - ... and sufficient time is available
 - For decision problems
 - E.g. satisfiability
- Local Search
 - When strong heuristics are available
 - When time is tight
 - When the anytime property is important
 - When the search space is really big...
How to Measure Success

How do you know if your search algorithm is good?

Classic "strawman" algorithms:
- Greedy
 - Start with null solution
 - Maximize heuristic \(f \) at every choice to generate solution
- Iterative Sampling (Langley 92)
 - Start with null solution
 - At every step, randomly add to growing solution
 - If dead-end, restart
 - Claim: this is a complete algorithm. Why?

Randomized Systematic Search

Randomization + restarts (Gomes, Selman & Kautz, 1998)

Start with a complete constructive search algorithm and a heuristic measure \(f \)
- Either constructive or perturbation

At choice points
- Select randomly from heuristically equivalent options
- Those with \(H \% \) of the best (according to \(f \))
- Cutoff parameter limits the number of backtracks
- Add bookkeeping to preclude repetition

Observations about RSS

Distribution of search costs across trials "heavy tailed"
- Many fast trials
- A few really slow ones
- Hypothesis: bad trials for poor early choices
- Therefore, restarts are important

Benefits
- Robust
- Easy to parallelize

Costs
- Hard to analyze & ensure completeness
- More parameters

CS540 Advanced Search Algorithms

Systematic Search Algorithms
- Randomized choices

Local Search Algorithms
- Randomized iterative improvement
- Simulated annealing
- Tabu search
- Iterated Tabu search
- Dynamic local search
- Variable neighborhood search

Hybrid Search Algorithms
- GRASP
- Squeaky Wheel Optimization