
Programming Assignment #1

General Instructions
You are to write a program that performs the task outlined below. You may write your code in
Python, Java or C++. Other programming languages may be acceptable; check with the
instructor before beginning work in any other language. All work must be your own, and may
not have been previously submitted for any other class.

To submit your work, create a ReadMe.txt file that clearly explains how to compile and run your
code. Archive your source files, data files (if any) and the ReadMe.txt file into a tar or zip file,
and email that file to CS540@cs.colostate.edu. If the TA cannot make your program compile
and run based solely on the instructions in the ReadMe file, you will not receive full credit. The
amount of the point deduction will depend on how often he has to contact you and how
difficult it is for him to get it to run. If the TA cannot get your program to run even after trying
to contact you, you will receive a grade of 0 for the assignment.

The Performance Task
You will write a program that reads two files: the first contains the initial state for a virtual
“blocks world”, and the second contains a goal state. Your program should output (to the
terminal) a sequence of commands (one per line) that will change the state of the blocks world
from the initial state to the goal state. Your program should create the sequence of commands
using A* search, as defined in Russell & Norvig (and CS440).

The blocks world consists (at least conceptually) of a set of blocks on a table. A blocks world
configuration specifies a set of blocks, their properties, and (some of) their relations to each
other. In particular, every block is denoted by a symbolic identifier of the form block#, where #
is any positive integer. Different configurations will have different numbers of blocks, and the
numbers in the identifiers need not be sequential. The goal and target configurations must
contain the same blocks.

Properties of blocks are specified by statements of the form (has block-id property-name value-
string). “Has” is a fixed symbol denoting that the statement is a property, not a relation. Block-
id is an identifier of the form Block# as discussed above, and specifies which block has the
property. Property-name is an identifier specifying the property. For this assignment, there is
only one property: color. But future assignments may add additional properties, such as size,
shape or location. Value-string is a string that contains the value of the property. In the case of
color, it is simply a string interpreted as the name of a color, such as red, green, blue, yellow,
cyan, etc. Any string is acceptable (although I don’t know what color foo denotes). For example,
a file might begin with the statement (has block3 color red), in which case the configuration
contains a block called block3 that is red.

Relations are specified by statements of the form (is block-id block-id relation-name). For
example, a file might contain the statement (is block3 block4 on-top-of). This says that block3 is
on top of block4. For this assignment, we have two relations: on-top-of and side-by-side.

An example configuration file might begin with:
(has block3 color red)
(is block3 block4 on-top-of)
(is block5 block4 side-by-side)

Note that not all properties need be specified. We know that block3 is red. We do not know the
color of the other two blocks, and that is OK. There are, however, some physical constraints.
The first is that if block1 and block5 are side-by-side and block2 is on top of block1 and block6 is
on top of block5, then block2 and block6 are also side-by-side. Alternatively, if block1 and
block5 are not side-by-side, then neither are block2 and block6. The second is that blocks can
only be side by side if they are the same height. What is height? If a block is not on top of any
other block, its height is 0. If a block is on top of another block, its height is one more than the
height of the block it is on top of. But note that height is not an explicit property or relation
given in the configuration file; it must be inferred. For the purposes of this assignment, you may
assume that the initial and goal configurations are legal.

Note too that not all relations are given in the configuration. If the configuration file in the
example above says the block1 and block5 are side-by-side, it doesn’t need to say that for
block2 and block6. You should be able to infer that.

Your program produces a sequence of commands. There are only two types of commands at
the moment, each with pre-conditions and post-conditions. The first command is (command
slide-to block-id block-id). The slide-to command is how you make two blocks side-by-side. Its
preconditions are (1) that both blocks have height 0 and (2) the second block has fewer than
four other blocks side-by-side with it. The post-conditions are (1) the first block is side-by-side
with the second block and (2) the first block is no longer side by side with any block except the
second. Note that on-top-of relations are unaffected.

The second command is (command stack block-id block-id-or-table). This is how blocks are
stacked. The preconditions are that neither block has any other block on top of it. The post
conditions are that the first block is now on-top-of the second block, and the first block is no
longer on-top-of any other block. Block-id-or-table is either a block-id or the special symbol
table, meaning that the block is put on the table and is not on-top-of or side-by-side with any
other block.

Grading
We will test your program on multiple test cases (pairs of initial/goal configurations). On each
test, 75% of the points will be awarded for correct solutions, while 25% of the points are
determined by the quality of the solution. (Although points may also be deducted if the
program is hard to compile or run, see the general instructions section above.)

