Lecture01b: Search (General)
CS540 1/24/19

Announcements
Lectures are posted to class web site
Class Piazza site is up
If you haven’t joined, do so!
Off-campus students: send email to cs540@cs.colostate.edu
First programming assignment:
Due Feb 5 (one week from Tuesday)

Search Problem (review of CS440)
A Search Problem has
• An initial state
• A set of possible actions
 • Pre-conditions: must be satisfied in order to apply an action
 • Post-condition: specifies how the state is changed by the action
• Goal test
 • May be specified as a goal state
• Path cost
 • To measure the quality of a (full or partial) solution
• From Russel & Norvig, 2nd ed., pg. 62

Example Search Problem
Start state: (city)
Goal state: (city)
Path cost: distance? Time? Money?

Search Strategies (Review of CS440)
Breadth-first Search
Depth-first Search
Best-first Search
 • Greedy
 • Maintains a single path
 • Driven by path cost so far
 • A*
 • Maintains a frontier
 • Driven by path cost so far + predicted remaining cost

Search Topics (CS540)
Applications
• Combinatorial Optimization
• Scheduling
• Planning
Algorithms
• Stochastic Local Search
• Evolutionary Algorithms
Combinatorial Problems

Applications
- Traveling Salesman Problem (TSP)
- Satisfiability (SAT)
- Planning
- Scheduling
- Packet Routing
- ...

Informal Definition
Find an ordering, grouping or assignment of a discrete, finite set of objects that satisfies given conditions (from Hoos & Stutzle)

Example Search Problems

1. Satisfiability (SAT)
 - In CNF
 - Example: \((A \lor \neg B) \land (B \lor \neg C) \land (C \lor \neg A) \land \neg (A \lor \neg B \lor \neg C)\)
 - Simple examples, clean formulation

2. Blocks World Path Planning
 - Harder examples, but closer to the motivation for this class
 - Not as simple to formalize
 - Example: create formation with red blocks next to each other
 - Formalize:
 - No two blocks in one square
 - Blocks move one square at a time

Decision vs Optimization Problems

Decision
- Solution satisfies logical condition (e.g. SAT)
- For a given problem instance
 - Does a feasible solution exist? (decision variant)
 - What is a feasible solution? (search variant)

Optimization
- Add an objects function \(f\) that quantifies the quality of the solution
 - "Best" can minimize or maximize \(f\)
- For a given problem instance
 - Does a solution exist with a given value of \(f\) (or better)? (decision variant)
 - What is a solution with optimal \(f\)? (search variant)
 - What is the optimal value of \(f\)? (evaluation variant)

Decision vs Optimization: Examples

1. Satisfiability
 - Decision:
 - Is there an assignment of truth values that satisfies the CNF equation?
 - Optimization:
 - Let \(f\) be the number of satisfied clauses
 - Find an assignment that maximizes \(f\)

2. Blocks World Path Planning
 - Decision
 - Is there a path that puts the red blocks together?
 - Optimization
 - Let \(f\) be the number of steps in a path
 - Find a shortest path that puts the red blocks together

Approaches to Search

- Dimension #1: Solution Formation
 - Construction
 - Start with NULL solution
 - Add to it
 - Perturbation
 - Start with complete (but possibly incorrect/suboptimal) solution
 - Modify it

Construction vs Perturbation Example

- SAT: \((A \lor \neg B) \land (B \lor \neg C) \land (C \lor \neg A) \land \neg (A \lor \neg B \lor \neg C)\)
- Construction:
 - \(\{\}, \{A\}, \{A, B\}, \{A, B, C\}\) (failure)
 - \(\{\}, \{\neg A\}, \{\neg A, \neg B\}, \{\neg A, \neg B, \neg C\}\) (success)
- Perturbation
 - \(\{A, B, C\} : f = 3, \{\neg A, B, C\} : f = 3\)
 - \(\{\neg A, B, \neg C\} : f = 3\)
 - \(\{A, \neg B, \neg C\} : f = 4\)
Approaches to Search (II)

Dimension #2: Search Space Traversal
- **Systematic**
 - Guarantee completeness
 - Example: breadth-first, depth-first, etc.
- **Local Search**
 - Traversal based on information in current state
 - Example: Greedy Search

Definitions

Completeness
- Given enough time, all feasible points in search space are explored

Any-time Property
- A solution is always available
- More time may produce better solution

Stochasticity
- Randomness is part of the search strategy
- Well, often pseudo-random...

When to use which approach?

Rules of Thumb:
- **Systematic Search**
 - When solution quality guarantees demand it
 - ... and sufficient time is available
 - For decision problems
 - E.g. satisfiability
- **Local Search**
 - When strong heuristics are available
 - When time is tight
 - When the anytime property is important
 - When the search space is really big...

How to Measure Success

How do you know if your search algorithm is good?

Classic "strawman" algorithms:
- **Greedy**
 - Start with null solution
 - Maximize heuristic \(f \) at every choice to generate solution
- **Iterative Sampling (Langley 92)**
 - Start with null solution
 - At every step, randomly add to growing solution
 - If dead-end, restart
 - Claim: this is a complete algorithm. Why?

CS540 Advanced Search Algorithms

Systematic Search Algorithms
- Randomized choices

Local Search Algorithms
- Randomized iterative improvement
- Simulated annealing
- Tabu search
- Iterated Tabu search
- Dynamic local search
- Variable neighborhood search

Hybrid Search Algorithms
- GRASP
- Squeaky Wheel Optimization

Randomized Systematic Search

Randomization + restarts (Gomes, Selman & Kautz, 1998)

Start with a complete constructive search algorithm and a heuristic measure \(f \)
- Either constructive or perturbation

At choice points
- Select randomly from heuristically equivalent options
- Those with H% of the best (according to \(f \))
- **Cutoff** parameter limits the number of backtracks
- Add bookkeeping to preclude repetition
Observations about RSS

Distribution of search costs across trials "heavy tailed"
- Many fast trials
- A few really slow ones
- Hypothesis: bad trials for poor early choices
- Therefore, restarts are important

Benefits
- Robust
- Easy to parallelize

Costs
- Hard to analyze & ensure completeness
- More parameters