Regularization and model selection

Chapter 4

Reminder: bias vs variance, overfitting

bias = 0.50 var = 0.25 bias = 0.21 var = 1.69

Regularization

The cure for overfitting - regularization

O Data
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Regularization
How does it work?

+ Constrains the model so it cannot fit the noise

. Potential side effect: if it cannot fit the noise, can it
fit the target function?

+ Introduces bias and reduces variance, so that
(hopefully) out-of-sample error is lower
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Constraining the model

Let's penalize large weights

One effect: increased bias

- (@) - M

sin(z) sin(x)

T xT
no regularization regularization

bias = 0.21 bias = 0.23

Second effect: dramatic reduction in variance

> g(z) = g9(@)
sin(z) sin(z)
xT T
no regularization regularization
bias = 0.21 bias = 0.23

var = 1.69 var = (.33

Constraining the complexity of the model
Replace E;, with:

Eag(h) = Eyw(h) + %Q(h)

Regularization term
A regularization constant

Ea is a better proxy for E,; than E;,




Choosing a regularizer

We want to constrain the learned function in the direction
of the target function.

Intuition: noise is non-smooth

Common choice for the augmented in-sample-error:

Eoug(W) = Eip (W) + AwTw

weight decay regularizer

Is there an optimal value for A?

The behavior of E,; as a function of the regularization
parameter for varying levels of noise:
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Regularization Parameter, A

Is there an optimal value for A?
Minimizing Eaug(W) = Ein (W) + AwTw

A=0 A =0.0001 A=0.01 A=1

Overfitting — —

Underfitting

Regularized least-squares

Ridge regression:
w* = argmin (y — Xw)T(y — Xw) + \||w]||?

W
= (XTX + AI)"'XTy

The regularization term controls the size of the components of
the weight vector.

There is a tradeoff between fitting (the error term) and
regularization. The regularization ferms can therefore prevent
overfitting. The parameter A controls this tradeoff.

Many ML methods can be expressed as solution to a criterion of
the form:

error term + regularization term

9/20/16



The effect of the regularization parameter

wgight vector coefficients as a function of the regularization parameter
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Each curve is the magnitude of the weight vector associated with a given feature.
Computed on the scaled version of the “heart” dataset.
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The effect of the regularization parameter

wgight vector coefficients as a function of the regularization parameter
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As the regularization parameter increases, w; shrinks toward O

Assignment 3

Explore the effect of regularization with least-
squares regression.

The validation set

How to choose the value of the regularization parameter?

Take a sneak peak at E,, using a validation set!

K
On a validation set (x1,%1), - , (Xz, yx). the error is Ea(h) :% Ze(h(xk)7 Yk)
k=1
1 K
E [E»al(h)} = R ;]E [e(h(xk)vyk)} = out(h)
1 & o?
var [Eml(h)} = — ;var [e(h(xk),yk)} =%
Eu(h) = E (h)io<i>
val out \/F
Section 4.3.1 1
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Choosing the size of the validation set

Given the data set D = (x1,91)," - , (XN, YN)

K points — validation N — K points — training
D, D,
val train

O(\/%) Small K =— bad estimate

Large K = 7

Rule of thumb: use 20% of the data for validation

Choosing the size of the validation set

Shaded region:

the uncertainty (variunce)f
of the estimate g

H . 10 20 30
Obser‘vﬂ‘hons- Size of Validation Set, K

Expect:

. As we increase the size of the validation set, the estimate
goes up because of a small training set

« The uncertainty in E,, decreases as we increase K, up to a
point, where a small training set size generates uncertainty
in the estimate

Using the validation set

The validation set is used to get estimates that allow
us to choose a value for the regularization parameter.
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Using the validation set

The validation set is used to get estimates that allow
us to choose a value for the regularization parameter.
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Using the validation set

The validation set is used to get estimates that allow
us to choose a value for the regularization parameter.

(Hv >‘1) (H7 /\2) (Hv >‘3) c (H7 >\M>

| | | |

g1 92 g3 to gm

Using the validation set

M models Hy, ..., Hy
H Ha -+ R
Use Diyain to learn g,, for each model Dorain ﬁ—i—i
Evaluate g,, using Dyal I g 9w
E,=Fw(g,); m=1,....,M Pz t t i
Pick model m = m" with smallest E,, By E, - By
pick the best
At the end: train a model on o )
all the data using the D

parameters of H,.

We have a dilemma...

We would like to have the following:

Eout(g)% out(g_)% val(g_)
(small K) (large K)

g : the model as a result of training on all the data
g the model trained on D; 4,

Can we have K both large and small?

Leave-one-out errors

Extreme case: K=1

? / —-e—/—&j_
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The leave-one-out estimate

Extreme case: K=1

“o

@ ] T}

X
E. = ﬁ ; €

Theorem. F,, is an unbiased estimate of Eyy (N — 1).

Cross validation
The leave-one-out estimate is expensive to computel!

Cross validation:
a Randomly partition the data into k parts (“folds").

a Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

a Repeat until each fold has been used for evaluation

D
Dl Dz Dg ’D1 Ds Dﬁ D? DS DQ DIO
1 1 —] 1 1 1 1 1

train validate train

Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:
a Randomly partition the data into k parts (“folds").

o Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

a Repeat until each fold has been used for evaluation

D
D1 Dy D3 Dy Ds Ds Dy Ds Dy Dig
1 1 S—] 1 1 1 1 1

train validate train

a The reported error is the average over the errors for each
fold.

Cross validation
The leave-one-out estimate is expensive to computel!

Cross validation:
a Randomly partition the data into k parts (“folds").

a Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

a Repeat until each fold has been used for evaluation

D
D1 Dy D3 Dy Ds Ds Dy Ds Dy Dig
1 1 S—] 1 1 1 1 1
train validate train

Stratified-cross validation aims at achieving roughly the same
class distribution in each fold.
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Using cross-validation
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Bias

The error estimates using the validation set are
optimistic estimates of E,!

We selected the model H,,= using Dy,

E..i(g,,+) is a biased estimate of Eq(g;,+)
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g Eey
customer select the best
model
29
Bias

The error estimates using the validation set are
optimistic estimates of E,!

We selected the model H,,,» using Dyl
E.i(g,,+) is a biased estimate of Eyy (g, «)

So you need to have a separate test set.

0.8
Training set: totally contaminated %o
Validation set: slightly contaminatedis

Test set: “clean” R

25

g Validation S%t5 Size, K

Measures of classifier performance

Classifier performance can be summarized by a table
known as the confusion matrix or contingency table:

o predicted labels:
0]

c 11

?) -1 1439 61

g 1 62 1438

i)

9/20/16



Measures of classifier performance

Let's take a closer look at the contingency table:

predicted labels:

=il 1
-1 1439 61
1 62 1438

true labels

How do we compute error from the contingency
table?

Measures of classifier performance

For binary classification problems it is customary to
express the contingency table as:

a predicted labels:
4

© il 1

—

° -1 TN FP

3 1 FN TP

G

iu)

TP - number of true positives
TN - number of true negatives
FP - number of false positives
FN - number of false negatives

Measures of classifier performance

For binary classification problems it is customary to
express the contingency table as:

a predicted labels:

[0}

G 11

; -1 TN FP Neg = TN+FP
5 1 FN TP Pos = TP+FN
i)

True positive rate/sensitivity/recall: TP / Pos
True negative rate/specificity: TN / Neg
False positive rate: FP / Neg

Precision: TP/ (TP + FP)

Measures of classifier performance

Suppose you have a dataset with very few positive
examples compared to negative examples (unbalanced
data)

A classifier that classifies every example as negative
would still attain high accuracy (this is called the majority
class classifier).

Need an alternative measure of accuracy!
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The choice of classification threshold

All the classifiers we will study provide a scoring function whose
magnitude indicates how sure we are it belongs to a given class.
For example: wTx + b

The choice of the threshold is somewhat arbitrary, and in a
given application we may prefer to ignore positive predictions
that are associated with small scores

To have a view of classifier performance that is independent of
the choice of threshold we consider the ROC curve.

ROC curve

The ROC curve is a plot of the true positive rate as a
function of false positive rate as you vary the classification

threshold
N /-/-
g2 |s
gor?
o
30.4
g
£
0.2

4o 0.8 10

53 55
False positive rate
How does the ROC curve of a perfect classifier look like?
For a random classifier?

ROC curve computed on the heart disease dataset from the UCT repository s

ROC curves and ranking

An ROC curve is of ten summarized by the area under the

curve (AUC). )

AUC =092

True

o7 3
False positive rate

AUC is essentially the probability that a positive example
will get a higher score than a negative example

ROC curves

This is also a nice way of comparing classifiers:

True positive rate

02 06 08 10
False positive rate
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