
Stability-based model selection for 
clustering 
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Clustering 

²  Clustering is the art of finding groups in data (Kaufman and 
Rousseeuw, 1990).  

²  What is a cluster?  
– Group of objects separated from other clusters 

v  Most clustering algorithms do not give information whether a 
partition is meaningful. 
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Silhouettes 

The Silhouette coefficient is defined for each example  
 
 
 
Sort s(x) and group by cluster: 
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s(x) =
b(x)� a(x)

max(b(x), a(x))

Figures generated using the scikit-learn silhoutte method 
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s(x) =
b(x)� a(x)

max(b(x), a(x))



Hierarchical clustering 

Algorithm outline: 
 
Start with each data point in a separate cluster 
 
At each step merge the closest pair of clusters 
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FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cut results in two distinct clusters, shown in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 10.10, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 10.10, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.



Stability under sampling 
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Premise: a clustering algorithm has captured some of the 
structure in a dataset if clustering solutions over different 
subsamples are similar. 



Clustering stability 

The main idea: 
 
Perturb the data (by sampling or adding noise) 
 
Compare pairs of clusterings (either to a reference or among 
pairs of perturbed clusterings) 
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Comparing clusterings 

It’s not easy because the label of a cluster is arbitrary! 
 
One possible solution: 
 
Characterize a clustering using a matrix C 
 
 
 
Given two clusterings, compute their dot product: 
 
 
Normalize it to be between 0 and 1. 
 

8 

A labeling L is a partition of X into k subsets S
1

, . . . , Sk. We use the following
representation of a labeling by a matrix C with components:

Cij =
Ω

1 if xi and xj belong to the same cluster and i 6= j ,
0 otherwise .
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This similarity measure was introduced by Fowlkes and Mallows. 7 Next, we show
that two commonly used similarity measures can be expressed in terms of the dot
product defined above. Given two matrices C(1), C(2) with 0-1 entries, let Nij for
i, j 2 {0, 1} be the number of entries on which C(1) and C(2) have values i and j,
respectively. The matching coefficient15 is defined as the fraction of entries on which
the two matrices agree:
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The matching coefficient often varies over a smaller range than the Jaccard coefficient
since the N

00

term is usually a dominant factor. These similarity measures can be
expressed in terms of the labeling dot product and the associated norm:
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Generating the distribution of cluster stability 
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Input: X {a dataset}, k
max

{maximum number of clusters}, num subsamples
{number of subsamples}
Output: S(i, k) {list of similarities for each k and each pair of sub-samples
}
Require: A clustering algorithm: cluster(X, k); a similarity measure between la-

bels: s(L
1

, L
2

)
1: f = 0.8
2: for k = 2 to k

max

do
3: for i = 1 to num subsamples do
4: sub

1

=subsamp(X, f){a sub-sample with a fraction f of the data}
5: sub

2

=subsamp(X, f)
6: L

1

=cluster(sub
1

, k)
7: L

2

=cluster(sub
2

, k)
8: Intersect= sub

1

\ sub
2

9: S(i, k) = s(L
1

(Intersect), L
2

(Intersect)) {Compute the similarity on
the points common to both subsamples}

10: end for
11: end for

Figure 2: The Model explorer algorithm.

(Figure 3). In our numerical experiments (Section 4) we found that, indeed, when the
structure in the data is captured by a partition into k clusters, many sub-samples have
similar clustering, and the distribution of similarities is concentrated close to 1.
Remark 3.1 For the trivial case k = 1, all clusterings are the same, so there is no
need for any computation in this case. In addition, the value of f should not be too
low; otherwise not all clusters are represented in a sub-sample. In our experiments
the shape of the distribution of similarities did not depend very much on the specific
value of f .

4 Experiments

In this section we describe experiments on artificial and real data. We chose to use
data where the number of clusters is apparent, so that one can be convinced of the
performance of the algorithm. In all the experiments we show the distribution of the
correlation score; equivalent results were obtained using other scores as well. The
sampling ratio, f , was 0.8 and the number of pairs of solutions compared for each
k was 100. As a clustering algorithm we use the average-link hierarchical clustering
algorithm.15 The advantage of using a hierarchical clustering method is that the same



Data 

A subset of yeast genes that belong to five categories; 
expression measured in 79 different conditions: 
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Data 

Here are the next 3 principal components: 
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Stability as a function of number of clusters 
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Figure 3: Left: histogram of the correlation similarity measure; right: overlay of the cumulative distribu-
tions for increasing values of k.

set of trees can be used for all values of k, by looking at different levels of the tree
each time. To tackle the problem of outliers, we cut the tree such that there are k
clusters, each of them not a singleton (thus the total number of clusters can be higher
than k). This is extended to consider partitions that contain k clusters, each of them
larger than some threshold. This helps enhance the stability in the case of a good
value of k, and de-stabilizes clustering solutions for higher k, making the transition
from highly similar solutions to a wide distribution of similarities more pronounced.

We begin with the data depicted in Figure 1, which is a mixture of four Gaussians.
The histogram of the score for varying values of k is plotted in figure 3. We make
several observations regarding the histogram. At k = 2 it is concentrated at 1, since
almost all the runs discriminated between the two upper and two lower clusters. At
k = 3 most runs separate the two lower clusters, and at k = 4 most runs found the
“correct” clustering which is reflected in the distribution of scores still concentrated
near 1. For k > 4 there is no longer one preferred solution, as is seen by the wide
spectrum of similarities. We remark that if the clusters were well separated, or the
clusters arranged more symmetrically, there would not have been a preferred way of
clustering into 2 or 3 clusters as is the case here; in that case the similarity for k = 2, 3
would have been low, and increased for k = 4. In such cases one often observes a
bimodal distribution of similarities.

The next dataset we considered was the yeast DNA microarray data of Eisen et
al.1 We used the MYGD functional annotation to choose the 5 functional classes that
were most learnable by SVMs,16 and that were noted by Eisen et al. to cluster well. 1
We looked at the genes that belong uniquely to these 5 functional classes. This gave
a dataset with 208 genes and 79 features (experiments) in the following classes: (1)



When there is no structure 
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Figure 7: Left: histogram of the correlation score for 208 points uniformly distributed on the unit cube;
right: overlay of the cumulative distributions of the correlation score.

A run on data uniformly distributed on the unit cube is shown in Figure 7. The
distributions are quite similar to each other, with no change that can be interpreted as
a transition from a stable clustering to an unstable one.

These examples indicate a simple way for identifying k; choose the value where
there is a transition from a score distribution that is concentrated near 1 to a wider
distribution. This can be quantified, e.g. by a jump in the area under the cumulative
distribution function or by a jump in P (sk > ¥), where sk is the random variable that
denotes the similarity between partitions into k clusters, and ¥ is a constant. A value
of ¥ = 0.9 would work on the set of examples considered here.

The results of our method are compared in Table 1 with a number of other meth-
ods for choosing k. We used most of the methods tested by Tibshirani et al. against
their gap statistic method. 11 They are among the methods tested by Milligan and
Cooper. 10 Jain’s method uses the quotient between the in-cluster average distance
and out-of-cluster average distance, averaged over all the clusters. The optimal num-
ber of clusters is chosen as the k that minimizes this quantity. The method of Calinski
and Harabsz is similar, but uses a different normalization, and the squared distances.
The silhouette statistic is based on comparing the average distance of the point to
members of other clusters with the average distance of a point to members of its own
cluster. A point is “well clustered” if it is closer on average to the members of its
own cluster than to points of other clusters. The silhouette statistic is the average of
the point silhouettes, and k is chosen to maximize it. The KL (Krzanowski and Lai),
Hartigan, and gap statistic methods use criteria that are based on the k-dependence
of a function of the within-cluster sum-squared distances. Almost all the methods
were successful on the Gaussian mixture data; this is to be expected since some of the

208 points distributed randomly on the unit cube 



Using stability to select how many PCs 

Stability for varying number of principal components: 
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Using stability to select how many PCs 

Dendrogram using all PCs vs two PCs: 
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Using stability to select how many PCs 

Let’s put some information on the dendrogram: 
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Conclusions 

Properties of the method: 
v  Can be used with any clustering method 
v  Makes no assumptions about the data 
v  Can detect lack of structure 
v  A principled approach that seems to work well 
v  Computationally expensive 
v  Can be used to select other “parameters” of the clustering 

Things I have not covered here: 
v  Stability of individual clusters 
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